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% Abstract

Programmable Logic Array From State Table (PLAFST) is a computer

aided design (CAD) tool that takes a symbolic state table as input and

produces a very large scale integrated (VLSI) circuit implementation of

the symbolic state table. The state table is first reduced symbolically

using equivalence partitioning. A near optimal binary state assignment

is made based on the Story, Harrison, and Reinhard procedure as modified

by Hoe and Ryhne. Distinct state assignment variables are sorted based

on cost estimates obtained by increasing the number of adjacencies in

the state transition table. Once sorted, the actual costs of valid

state assignments made from the state variables are calculated. Since

C state assignments with the lowest cost estimates are investigated first,

an optimal solution is found with a small number of iterations. This

binary state assignment is demonstratably less costly than either simple

or gray code assignments of the state variables. The VLSI circuit

consists of a programmable logic array (PUL) and clocked buffers. The

state buffers are properly interconnected. The final outputs are Chip

Layout Language (CLL) and Caltech Intermediate Format (CIF) descriptions

Sof the integrated circuit. PLAFST also plots the final integrated

circuit.

v
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• INTRODUCTION

Problem

The primary task of this thesis is to develop a computer aided

design (CAD) tool that implements a synchronous finite-state machine

with a programmable logic array (PLA). This CAD tool operates on the

AFIT VAX 11/780 running under the UNIX operating system. It functions

in the same manner as other AFIT CAD tools, such as Chip Layout Language

(CLL) and PRESTO. The user's manual has the same style as these

programs.

The input file to the CAD tool developed by this thesis, PLA From

State Table (PLAFST), contains inputs, symbolic states, transitions, and

outputs. The input file may also include an error state for transitions

from illegal states. PLAFST provides several output files showing state

table reductions, state assignments, and other results of the

minimization process. The final output files include a CLL file, a

Caltech Intermediate Format (CIF) file, and a plot of the final circuit.

The PLA is designed with nMOS very large scale integration (VLSI)

technology with a selectable lambda. The default PLA generated by

PLAFST includes the combinational logic and clocked buffers for the

state, input, and output signals. These buffers are standard cells

from the Stanford nM )S Cell Library. The buffers that contain the next

I01



and present states are properly interconnected. An option, -s, causes

- PLAFST to generate only the PLA. The designer can then use this PLA in

a CLL program. PLAFST also determines, via PLAGEN, if the synchronous

finite-state machine (SFSM) exceeds size constraints.

Approach

PLAFST is a shell script running under the UNIX operating system

which controls the execution of programs residing on the VAX 11/780.

These programs are a mixture of programs currently on the AFIT VAX

11/780 and new programs. All new programs are designed using Structured

Analysis and Design Techniques (SADT) (Ref 2:63) and written in C.

PLAPST causes the following tasks to be accomplished:

1. Reduces the symbolic state table

2. Assigns states

3. Reduces the combinational logic.

.' 4. Generates the PLA CIF specification

5. Generates the SFSN CLL specification

6. Plots the SFSM
.

7. Generates the SFS! CIF specification.

-.

-V. Figure I-1 shows the relationship between PLAFST and other resident

* programs on the VAX 11/780. PRESTO, PLAGEN, and CLL previously existed

,* .. on the VAX. CFORN translates PRESTO's output to the format required by

1-2
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PLAGEN. SYM and ASSIGN comprise the bulk of the programs created during

S '-' this thesis effort. MAKESFSM decodes SYM's output and the SFSMPLA CIF

file to generate the SFSM CLL file. The SFSM CLL file includes the PLA,

buffers, and the state variable interconnections. SYM, ASSIGN, and

MAKE SFSM are discussed in the following paragraphs.

•S ta te

:! PLAFST

(Shell Scriptl

'I

CIF Specification

Plot

Figure I-1. PLAFST Structure Chart

.. Synbolic State Table Reduction ( SYM ). The symbolic state table

is reduced by equivalence partitioning (Ref 3:22). The first step in

equivalence partitioning groups all states in equivalent partitions.

For this step, states are considered equivalent if and only if identical

outputs are generated for each of the possible inputs (Ref 3:19).

Subsequent steps modify this definition slightly. States are equivalent

.. if and only if they identically transition between partitions

1-3
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(Ref 3:20). The symbolic states are repeatedly partitioned using this

definition until no further change in the partitions results. The

minimum set of symbolic states is chosen by taking one state from each

partition.

One state may be designated as an error recover state in the event

k' that an undefined state is entered. The total number of states possible

in any binary SFSH will always be a power of two. There is no guarantee

in the symbolic state table and especially in the reduced table that the

number of states will be a power of two. Consequently, there will

probably be some states that are undefined. In case the SFSM

erroneously transitions to one of these states, it should be designed to

transition to a specific state to recover from this error.

However, the algorithm used by PLAFST to assign an optimum state

Y assignment will be degraded by a designated error state. The algorithm

"" uses undefined states as don't care conditions in the Quine-HcCluskey

state table reduction. A designated error state causes all states not

defined in the input file to transition to the error state. Therefore,

the algorithm can not use these states to minimize the costs of the PLA.

The possibility that the number of states will equal a power of two

. must also be considered. In this case, the SFSM has no undefined states

to which it can transition. Therefore, the error recovery state

designation is ignored.

Jb

1-4
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State Assignment ( ASSIGN ). The states of the symbolic state

" table are assigned binary values based on the Story, Harrison, and

Reinhard (SHR) optimum state assignment. The SHR method was originally

optimized for use with J-K flip-flops (Ref 4:1365). P. S. Hoe and V. T.

Rhyne optimized the SHR optimal state assignment algorithm for the D

flip-flop in 1976 (Ref 5:306). PLAFST uses the Hoe and Rhyne version of

the SHR algorithm because of the PLA's inherent D flip-flop

characteristic.

The algorithm is based on the comparison of a series of cost

estimates for each of the state assignment columns. The costs estimates

are based on the number of first and second level gates required to

implement each state assignment column. This cost estimate is well

suited to a PLA which is basically a two level NAND/NOR gate array. The

state assignment column is best explained by an example. A four state

-Nq SFS1 has two columns of binary digits, if the states are listed by row.

This in true for any binary state assignment scheme that might be used.

Each of these columns is a state assignment column. Once the cost

estimates are generated, they are sorted in monotonically nondecreasing

order. An ordered search is performed to find an optimal state

assignment. There may be more than one state assignment that satisfies

' the criteria of optimum state assignment. This algorithm does not

consider outputs.

SFS CLL Specification ( HAKE SFSM ) PLAFST automatically adds

clocked buffers to the PLA generated from the assigned state table. It

also interconnects the state buffers. This feature may be disabled by

1-5



use of an option, -a, in the command line to PLAFST. The clocked

buffers used are PlaClockIn and PlaClockOut from the Stanford iaNOS Cell

Library (Ref 6). Since a PLA has a regular structure, the distance

between adjoining buffers is a constant. These buffers are iterated

using CLL statements with dummy variables. Buffers are also added for

each of the input and output signals. In a similar manner, metal wires

can be added to interconnect the state buffers. PLAFST replaces these

dummy variables with constant values multiplied by the number of SFSM

states. The regular structure of the PLA, clocked buffers, and

Interconnecting wires is shown in Figure 1-2.

I~ ~ ~ I- -. -- 1 -- R.

L I,

I I --H I -R

1-66
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Scope

This thesis is limited to completely specified synchronous

finite-state machines. The number of computations required to

completely minimize a state table quickly grows with the number of

states in the table, much like the classic "traveling salesman" problem.

This makes state minimization of completely specified SFSMs practical

only for SFSMs with a small number of states. For this reason, PLAFST

reduces the symbolic state table with a partitioning scheme that does

not guarantee a minimum cost solution. The state assignment algorithm

guarantees a minimal solution for the reduced state table. A minimal

solution is one with the least number of AND and OR gates required to

implement the state table with a PLA.

State minimization of incompletely specified finite-state machines

is much more complex than completely specified finite-state machines due

to state-splitting (Ref 1:406). An unspecified state is a state whose

output is not designated as true or false. Since the unspecified state

can be specified as a 1 or 0, the state must be split into two rows in

the symbolic state table. One of the new rows has the state output

specified as a 1. The state output of the other row is a 0. If a row

in the symbolic state table had two unspecified states, four new rows

would have to be added to the symbolic state table in order to account

for all possible combinations of the two unspecified states.

State-splitting can quickly expand the size of the symbolic state table

and vastly increase the number of computations required just to reduce

'V'; the table.

1-7



","" B~karond

Computer Aided Design Tools. This thesis is concerned with the

development of a computer aided design (CAD) tool that implements

synchronous finite-state machine designs with programmable logic arrays

(PLA). This CAD tool operates in the Air Force Institute of

Technology's (AFIT) CAD environment. Currently, AFIT CAD facilities

are capable of designing very large scale integrated (VLSI) circuits.

These facilities operate under UNIX on the VAX 11/780 computer. Many

of the CAD tools presently used at AFIT, and UNIX itself, are written in

the C language.

The Caltech Intermediate Format (CIF) is used to specify VLSI

circuits at AFIT. CIF files are very exact specifications of the

actual masks used to fabricate an integrated circuit. Like assembly

language programming, CIF programming is very tedious. Fortunately, a

higher order language that generates CIF files exists on the VAX 11/780.

This language, called the Chip Layout Language (CLL), is an English-like

language that allows the use of symbols, constants, and arithmetic

expressions rather than the direct coded chip layouts of CIF. The CAD

tool developed by this thesis functions as a higher order language that

creates another level of abstraction between the designer and CLL.

w.:

1-8
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Synchronous Finite-State Machines. The synchronous finite-state

machines implemented by this thesis are devices that transition between

stable states when triggered by a clock signal. The synchronous

finite-state machine (SFSM) accepts inputs at the beginning of a
transition, generates outputs during the transition, and finally arrives

at a new state. The inputs and outputs include the present and next

states respectively. All states, inputs, transitions, and outputs are

completely specified. Examples include computer control units, traffic

lights, and digital watches.

Present State Next State/Output
__-_____0 1 -- Inputs

LG LG/1 LY/O
LY LR/O LR/O
LR 1./0 LG/l

LG - Light Green Input - 1 Time Out
A LY - Light Yellow - 0 Not Time Out

LR - Light Red Output - 1 Walk Sign on
- 0 Don't Walk

Sign on

Figure 1-3. Symbolic State Transition Table

A SFSM is generally designed using either a Mealy or Moore state

diagram which graphically depicts each state, state transitions, inputs,

and outputs. A state diagram can be directly translated to a symbolic

state transition table, Figure 1-3. Each state symbol represents an

actual physical mode of the SFSM. For example, state LG represents the

traffic light mode in which the green light is on and the red and yellow

lights are off. The inputs and outputs are coded in a binary format.

'-9

..........................................*
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The input codes designate the columns of the Next State portion of the

table. The next state and output, separated by a slash, are listed in

the appropriate column and row.

Figure 1-3 is an example of a symbolic state transition table that

describes the operation of a simple traffic light. The possible

situations or states for this traffic light are listed in the Present

State column. A Time Out signal is the only input. The symbolic state

.P q table shows all possible transitions from the present to next state

given that the input is a 1 or 0. The table also shows when the walk

sign will be turned on by the output code following the slash in the

.C Next State column. The program developed by this thesis uses this type

* ." of information as input.

Sulary of Current Knowledge

A SFS is fabricated by digitally encoding the information shown in

Figure 1-3, minimizing the encoded information, and then generating a

VLSI circuit that implements the SFSM. The two basic circuits of an

SFS are the combinational logic and memory elements. The combinational

logic transforms the state machine inputs and present state into the

outputs and next state. The memory elements retain the present state of

o-"" the synchronous finite-state machine until the next transition. When

the clock pulse is received, the next state furnished by the

combinational logic becomes the new, present state in the memory

Nelements.

1-10
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SFMS can be realized in several ways. One way is to create a
:4

programmable logic array (PLA). A PLA has several advantages over other

methods, especially when VLSI constraints are considered. VLSI circuits

are much denser if the circuit is composed of a basic cell that is

repeated in a matrix array. Since only the basic cell must be designed,

array structures also require less time to design than a circuit made

from discrete components. Memory circuits and PLAs are examples of

cells used repeatedly in a matrix.

The tu )hase clock that controls the PLA input and output buffers

has two major advantages. The first advantage is the latch formed by

the clocked input and output buffers. This latch is an inherent D

flip-flop. Since this D flip-flop can be used as the required SFSM

*memory element, the PLA implementation of a SFS does not require

external memory. The second advantage is that the SFS is insensitive

to data propagation delays in the PLA matrix. However, this is only

true if the clock cycle is longer than any propagation time through the

PLA combinational logic.

Phase 1

~ThflJ1~Phase 2

Figure 1-4. Two Phase Clock

.5

1-11
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The clock consists of two phases which are never "high" at the same

time and are both "low" for a short time between phases. This is shown

in Figure 1-4. The input and output buffers are clocked by different

phases. For purposes of discussion, the input buffer will be clocked by

phase 1 and the output buffer will be clocked by phase 2. The clocking

mechanism for the buffers are pass transistors in the data path. These

pass transistors are activated only when the controlling phase is high.

Data is passed to the buffer when the pass transistors are activated.

Any changes in the data will also be passed to the buffer while the pass

transistor is activated. Once the clock phase transitions low, further

changes in the data will have no affect on the buffer and the data in

a . the buffer is used by the next stage of the PLA. For this reason, data

' is considered clocked into the buffer on the falling edge of the clock

phase.

,%4

The block diagram in Figure 1-5 shows the feedback lines which

- connect the output and input buffers. The output buffers contain the

next state of the SFSM. The input buffers, which contain the SFSM's

present state, act as D flip-flops. They retain the present state of

the SFSN during phase 2 when the next state and outputs are generated by

the PLA matrix. The SFSM transitions between states during phase 1 when

the next state is clocked into the input buffers via the feedback lines.

The input buffers function as D flip-flops by outputting the same

information that is clocked into them and remembering this data until

new data is clocked in.

1-12
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Phase 1 Phase 2

Inputs Input Combinational Output Outputs
------ Buffer -- Logic -- Buffer ------- --

Figure 1-5. Progralable Logic Array Block Diagram"S.
A PLA's insensitivity to propagation delays is a result of the two

phase clock discussed above. Information from the input buffers begins

to propagate through the PLA matrix at the beginning of phase 1. At the

end of phase 1, the data is clocked into the input buffer and the input

data can no longer change. Data is clocked into the output buffers in

the same manner during phase 2. The data clocked into the input buffers

has until the end of phase 2 to propagate through the PLA matrix. As

long as the time between clock phases is longer than the propagation

time through the PLA, differences in data propagation times will have no

effect on the PLA output.

I

'S-,
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Syst-m

PLAFST in required to enhance AFIT's CAD capability to implement

synchronous finite-state machines. Enhancement means the SFSM designer

works at the symbolic level to specify state transitions, inputs, and

outputs. The designer lets PLAFST handle all the details of generating

the SFS1 CIF specification for manufacture. These details include the

reduction of the symbolic table, optimum state assignment, PLA

generation, and generation of the SFS1 CIF specification. Currently,

only the PLA generation can be accomplished by an automated tool.

PLAFST must also be user friendly and be integrated into the AFIT CAD

environment. As a user friendly program, PLAFST checks the input file

for errors and supplies meaningful messages about the type of error and

where the error occured.

Since AFIT's CAD tools for VLSI design are hosted on a VAX 11/780

running UNIX, PLAFST must also execute under this operating system.

Three of the seven tasks listed in Chapter 1, Approach, can be

accomplished by programs already running on the VAX 11/780. This leads

to the idea that PLAFST should be a shell script that calls other

programs to accomplish specific tasks. A shell script also aids

development and testing of the entire program. Programs for each task

can be tested individually as they are completed. The shell script,

itself, can be tested by the use of "stubs" or using the ECHO command to

-i
• . display the desired command. In this manner, the behavior of the shell

II-'



, 4r. script can be tested without actually running the called programs.

SADTs are used to strengthen these modular development and testing

concepts. Maintenance of PLAFST and it's related programs is also

enhanced by not proliferating computer languages within the AFIT CAD

environment. Since UNIX, PRESTO, and other CAD programs are written in

C, all programs related to PLAFST are written in C. This includes the
4'.

shell script which uses C liko commands.

Size

There are three size limits that must be considered. The first is the

physical size of the SFS. PLAFST assumes that the SFS4 is a contiguous

device that is fabricated on single die. No provisions are made to

split SFSs across more than one die. It is the designer's

9. responsibility to determine if the SFS generated by PLAFST exceeds this

criteria.

The second size consideration is the host computer limits in terms of

time and resources. Programs that are used by PLAFST, such as PLAGEN

and PRESTO, may have additional size constraints. Obvious indicators

would be excessive time to execute PLAFST and messages from the UNIX

operating system. Since PLAFST provides an output file from every

program module, the user should be able to easily determine which module

exceeded it's own limits or those of the host computer. An additional

tool is the PS command. This command shows which program is currently

running and the elapsed execution time.

11-2
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The third consideration is the actual scaling factor for lambda used in

the generation of the SFSM. The lambda size must be supplied by the

user.

Options

PLAYST has four options. The first option, -s, allows the user to

stop execution of the program after the PLA has been generated. The

final PLAFST output is the SFSN PLA CIF specification without buffers or

feedback lines. The SFS PLA could then be used with different buffers

'"K or connections than PLAFST provides. The default is to add the Stanford

unOS Cell Library cells PlaClockIn and PlaClockOut and interconnect the

state buffers using poly and diffusion wires (Ref 6).
9...

The second option, -d, is for debugging. Print statements used to

debug PLAFST are controlled by IF statements that test for the debug
.'.

switch. The print statements output to the standard error file and show

the effect of critical data manipulations. ASSIGN, the program which

implements the optimum state assignment has an additional debug feature,

mass-debug. The option is not invoked by PLAFST. It can be used by

running ASSIGN with the -m and -d options. Masa-debug must be used with

the debug option to provide meaningful output. This option will

" S generate massive files, so it is best to route the output to a terminal

for viewing. Even small state tables with five states and ten
•~ .,
' .'"* transitions will generate mass-debug files in excess of 150k.

11-3
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The third and fourth options, -sa and -gc, control the state

assignment method. The -sa option merely assigns states in the same

order as the input file. For example, the first state would be assigned

the number zero and the fifth state would be assigned the number 4. The

. -gc option assigns the state values using a gray code. The gray code

assignment method has no more than one binary digit difference between

adjoining states. For example, a four state SFS would have state

assignments of 00, 01, 11, and 10. These values would be assigned to

the symbolic states in the same order as the input file.

IMputs

PLAFST is invoked by the command line:

PLAFST [ -s ][ -d 1[ -sa, -gc ] < input.file

The input file includes the number of states, inputs, outputs, a CIF

number, and the lambda size on the first line. Subsequent lines include

the state, input, and output names. The input and output names are

assumed to represent independent binary variables. The next two blocks

of information are the state array followed by the output array. The

input file is not sensitive to which line information is on, only the

order in which it appears.

The delimiter between any information in the input file is one or

more spaces. A slash and any number of spaces is used to separate

output variables which are true for the same transition. An additional

4j I-4
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., <.." special character is the asterisk, *, which denotes an error recovery

state. The error recovery state must be preceded by the asterisk which

may not have intervening spaces. PLAFST will send the user a warning if

an error state is not included. The reasons for and against an error

state are discussed under State Assignment in Chapter 1. The general

format and a specific example (Ref 7:87) are shown in Figures II-1 and

11-2.

4 3 5 950 2.5 /* #_States, #-inputs, #_outputs, CIF_#, lambda *

*HG /* Designated error state and first symbolic state */
HY /* Symbolic states */
FG
FT

. °1

: ":"car /* Input names *

* - long_timeout
short timeout

•a /* Output names */
hO
hl
fO
fi

HG HG HG HG HG HG HY HY /* Next state array -7
T FG HY FG.HY FG HY FG
FT FT FY FY FG FG FY FY
FY HG FT HG FY HG FY HG

fO f0 fO £0 fO fO f0/s fO/s /* Output array */
hi/fO hl/fO/s hi/fO hl/fO/s hi/fO
hl/fO/s hi/fO hl/fO/s hO/s hO/s hO/s
hO/s hO hO hO/s hO/s hi/fO hl/fO/s
hi/fO hl/fO/s h1/fO hl/fO/s h1/fO hi/fO/s

Figure I-1. Input Array Example

The number of states, inputs, and outputs must be supplied to

PLAFST so that it can determine what each symbol is supposed to

*' .1-
I, 1-5
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represent. The CIF number which PLAFST uses must be supplied to CLL and

PLAGEN. PLAGEN additionally requires that the lambda size be specified.

Symbol names must be 25 characters or less and include the

alphabet, 0-9, and the underline character, _. The characters may be in

any order and case is significant. These conventions are tailored after

CLL.

#_states # inputs #_outputs CIF__ lambda

State Names

Input Names

Output Names

State Array

Output Array

Figure 11-2. Input Array General Format

The order in which the symbols are listed is extremely important.

PLAFST uses the order of the state and input names to decode the

information in the array. PLAFST assumes that the input is a standard

symbolic state table such that the present states are listed vertically

and the inputs are listed horizoutally across the top of the state

table. The first state name is associated with the first row of the

state table. The next state name is paired with the next row. In a

similar manner, the first input name is associated with the left most

column in the state table. Successive input names should head the

remaining columns. Input names will arbitrarily be assigned increasing
.4
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binary values from left to right. The first input name is assigned the

binary value zero. Input names are placed in the SFSM PLA in the same

order as the input file. The first input name is the left most input to

the PLA. In the same manner, the outputs are ordered from left to right

according to their order in the input file. The first output name is

the left most output from the PLA.

The first array is the state transition array. This array is

listed in order by row with each row listed from left to right. The

output array follows the state transition array and is organized in the

same manner. However, there are some differences. The output variables

are listed only if they are true for a given transition. There may also

be more than one output variable true at the same time. In this case,

the variables are separated by a slash, /, and by any number of spaces.

A zero must be used to show that none of the outputs are true for a

given state. This is required to preserve the order of the output

array.

PLAFST determines if the correct number of states and outputs

appear and sends an appropriate message to the user. An incorrect

number causes the program to stop execution.

11-7



SYSTEK DESIGN

Overview

PLAFST was designed at the system level using SADTs. This approach

starts with the basic inputs, outputs, and some means to convert the

inputs into the outputs. The means, in this case, is PLAFST. This is

shown in Figure 11-1, Node A-O. Node A-0 is decomposed into more

detailed levels. Each successive level gives more information about how

an input is transformed into an output. This progression is seen in

Nodes AO, Al, and A3. Node A2 is not broken down past the AO level

since the only program in A2 is PLAGEN. PLAGEN is an existing program

that will not be altered during the development of PLAFST.

The remainder of this chapter is devoted to the SADT documents.

These include the Node List, Data Dictionary, and the node descriptions.

The Node List contains the names of all nodes. The Data Dictionary

defines all information passed between nodes. The node descriptions

elaborate on the tasks accomplished by each node.

Node List

Node A-O PLAFST - Programmable Logic Array From State Table

Node AO: PLAFST

Node Al: Kanipulate State Table

-. -" Node All: Reduce Symbolic Table

U. z111-1
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Node A12: Assign States

Node A13: PRESTO

Node A14: Change Format

Node A2: PLAGEN

Node A3: Make SFSM

Node A31: Add Clocked Buffers

Node A32: Connect State Buffers

Node A33: CLL

Data Dictionary

All Nodes:

Keyboard Input: The command line entered to the UNIX operating

system. The command line includes PLAFST and the input file.

The command line may include the option to stop program

execution after PLAGEN.

PLA CIF Specification: The CIF file that describes the PLA that

p.. implements the SFSM.

PLA Truth Table: The truth table that describes the SFSM PLA after

the states have been assigned.

Reduced PLA Truth Table: The PLA Truth Table after the combinational

logic has been reduced.

Reduced Symbolic State Table: The original input state array after

it has been reduced through equivalence partitioning.

SJ'SM CIF Specification: The CIF file that describes the SFSM PLA

including the clocked buffers and interconnected states.
.
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SFSN Plot: A plot of the SFSM integrated circuit.

Symbolic State Table: The original state array from the input file.

Node AO, Al, and A3:

PLAFST Control: The sequence of control by the shell script.

Node Al:

Dot Format: This file is the Reduced PLA Truth Table in the

format used by PRESTO. The format must be changed before

PLAGEN can use the information in the truth table.

Node A3:

Partial SFSM CLL Description: A CLL program that includes the

SFSM PLA and the clocked buffers. The state buffers are not

yet connected.

.1't
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lode A-O

- PLAFST is a UNIX shell script that initiates various other programs

to generate the files shown from the symbolic state table input. The

files are generated in the order shown from top to bottom. The finalJ
Aoutputs are the PLA implementation of the SFSM specified by the input

S file. Reference Figure 11-1.
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Node: A-0
Title: PLAFST - Programmable Logic Array From State Table
Date: 3 Jul 83
Rev.: 1.0

'I.

I1 Keyboard Input Reduced Symbolic
State Table 01

12 Symbolic State PLA Truth Table 02
Table

PLAFST Reduced PLA Truth Table 03

PLA CIF Specification 04

4 SFSM CIF Specification 05

SFSM Plot 06

Figure 111-1. Node A-0

111-5
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lode AO

This node shows the primary breakdown of PLAFST. PLAFST consists

of three main modules. The first module manipulates the input file into

a PLA truth table. The second module generates the PLA structure.

Finally, the third module adds the necessary buffers and connections to

;. complete the SFSH. Reference Figure 111-2.

Node Al - Manipulate State Table. This node accomplishs the first

of the three tasks listed the Approach section of Chapter 1. The input

symbolic state table is reduced using equivalence partitioning. The

states are assigned optimum binary values and the PLA Truth Table is

generated. The combinational logic is reduced to make the Reduced PLA

Truth Table file.A

Node A2 - PLAGEN. This node consists of the program PLAGEN.

PLAGEN creates the PLA Structure from the Reduced PLA Truth Table.

Node A3 - Make SFSN. This node modifies a CLL program with dummy

variables in order to add clocked buffers and state interconnections to

the PLA generated by PLAGEN. This node may not be executed if the

option, -a, is used in the command line. In this case, the final output

is the file created by PLAGEN.

111-6
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" Node : AO
Title: PLAYST - Programmable Logic Array From State Table
Date: 3 Jul 83
Rev.: 1.0

.Q oi

" ;'.i State PLAF ST Control

12 Symbolic Manipulate Reduced Symbolic
State Table State State Table 01

Table

PLA Truth Table 02

Reduced PLA
1 Truth Table 03

.'

-S..

~PLA CIF
',iSpecification 04

Me.. SFSM

SFSM CIF
Specification 05

SFSM Plot 06

* Figure 111-2. Node AO

111-7
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"/'. Node Al
i. °

This node shows the system level details of transforming the input

file into the Reduced PLA Truth Table. The first module reduces the

symbolic state table in the input file. The second module is the most

complex. It contains the algorithm for assigning optimum binary values

to each of the symbolic s-tates. PRESTO, the third module, already

exists in the AFIT CAD library. It reduces the combinational logic of

the PLA Truth Table. The final module, A14, transforms the format used

by PRESTO to the format used by PLAGEN. Reference Figure 111-3

Node All - Reduce Symbolic Table. This module implements the

equivalence partitioning algorithm discussed in the Approach section of

Chapter 1. The symbolic states are divided into equivalent partitions

and one state is chosen from each partition. These states are then

organized into the Reduced Symbolic State Table.

A Node A12 - Assign States. This module performs the Noe and Rhyne

modified SHR optimal state assignment algorithm for D flip-flops. The

algorithm has four basic parts. The first determines the state

assignment column variables. The second part calculates the cost of

each of these variables. The third step sorts the cost estimates in

monotonically nondecreasing order. The fourth step performs an ordered

search on the sorted cost estimates to determine an optimum state

assignment. The solution may not be unique and does not consider the

outputs.

111-8
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* Node A13 - PRESTO. This is a program currently in use at AFIT.

PLAFST supplies the file generated by Assign States to PRESTO and uses

the output file to generate the PLA structure.

Node A14 - Change Format. Not all CAD programs at AFIT are

,' compatible. Before the output file from PRESTO can be used by PLAGEN to

make the SFSN PLA, the format of the file must be changed. This program

accomplishes this task.

111-
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Node: Al
Title: Manipulate State Table
Date: 3 Jul 83p Rev.: 1.0

11 PLAFST Control

12 Symbolic Symbolic Reduced Symbolic

Iz State Table Table State Table 0

Assign States _ _ _ _

.PLA Truth Table 02

2

PRESTO
Dot Forat

3

Change Format Reud L

Truth Table 03

Figure 111-3. Node Al
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Node A3

This node modifies a CLL program with dummy variables. The dummy

variables include the CIF number for calling the SFSM PLA, the number of

clocked buffers, and the number of state buffers. Reference Figure

111-4.

Node A31 - Add Clocked Buffers. This modules modifies the number

of clocked buffers connected to the SFSM PLA in the CLL program. This

number is calculated from the size of the Reduced PLA Truth Table.

Node A32 - Connect State Buffers. This module adds the correct

number of wires to interconnect the state buffers. This number is also

calculated from the size of the Reduced PLA Truth Table.

r-
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" ,- Node: A3
.*,Title: Make SFSM

Date: 3 Jul 83
Rev.: 1.0

,'.'.1 PLAFST Control

12 PLA CIF Add
Specification _ Clocked Partial SFSK CLL

Buffers Specification

13 Reduced PLA
Truth Table

..

- Connect

state SF511 CLL
Buffers Specification

CLL
SFSM CIF

-. Specification 05

SFSM Plot 06

* -. 3

-S.

Figure 111-4. Node A3
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*: DETAILED DESIGN

Overview

This chapter considers only two nodes from the system SADTs. Nodes

All, Reduce Symbolic Table, and A12, Assign States, provide the optimum

truth table that is processed by existing programs in the AFIT CAD

library. PLAFST uses three powerful CAD programs to accomplish the VLSI

circuit design and specification. These programs are PRESTO, PLAGEN,

and CLL. Since these programs are used as "black boxes", the system

design description can adequately specify their inputs and outputs. The

three remaining nodes were also adequately discussed in the system

design. These nodes are A14, A31, and A32. They deal with file format

changes and simple scaling of dummy variables within an established

file.

Reduced Symbolic Table

This node is not broken into lower level SADTs because the

algorithm is a straightfoward sorting routine. This routine,
equivalence partitioning, consists of two parts (Ref 3:19-23). The

~first Is a presort of the symbolic states. The states are partitioned

into equivalent groups that generate identical outputs for each possible

input condition. The states are then sorted a second time by state

transitions only.

. .p. .
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The second sort partitions the states into groups with identical
4.

transitions for each of the possible inputs. Transitions are identical

if they are between the same groups as partitioned by the previous sort.

The second sort is repeated until no changes are made in the groups of

states. Once the sorting process is completed, one state from each

equivalence partition is chosen. These states form the reduced state

table.

Primary error checking is also be done by this routine. Error

checking is based on the first five numbers in the input file. These

numbers, in order, are the number of states, inputs, and outputs, the

CIF number, and the lambda size. They control the number of symbolic

names and the size of the next state and output arrays. The error

checking detects if the symbolic names do not match those in appropriate

array. It also detects if the array dimensions are too large or small.

. Assign States

This node contains the algorithm for an optimum state assignment

and is the heart of this thesis. The algorithm is a modification of the

SHR optimal state assignment algorithm developed in the early 1970's by

Story, Harrison, and Reinhard (Ref 4). Modifications to the SHR

algorithm were presented in a series of articles through 1977 written by

Moo and Rhyne (Ref 5, 8-10). These modifications included generation of

the basic column variable set, cost estimation, and application of the

* algorithm to the D flip-flop case. The algorithm is discussed in detail

* in the following paragraphs. The SADT description follows this

IV-2
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discussion. Node descriptions refer back to the detailed discussion.

Step 1 - Basic Column Set. The algorithm is based on the concept

of a state assignment column. A state assignment column is one bit wide

and N bits long. N is the number of states in the state table. The

state assignment columns are used in groups of n where n is an integer

greater than or equal to log (R). An example of three state assignment

columns is shown in Figure IV-1. These state assignment columns are

from Figure IV-2 which depicts the the basic column set for a state

table with five states. A five state SFSM requires three state

variables, so three state assignment columns are used. The optimization

Noe and Rhyne algorithm is shown in the Example section, Chapter IV.

A The state assignment columns are also called y-variables and are

subscripted. The subscript is the decimal value of the binary state

assignment column read from top to bottom. The top bit is the most

significant. Figure IV-1 also shows a valid state assignment. Reading

across the columns, each row of bits is unique.

y y y
4 9 14

0 0 0
0 1 1

', 1 0 1

0 0 1
0 1 0

Figure IV-1. Three State Assignment Columns

I*° . .



The basic column set is the minimum number of state assignment

"-"columns that must be investigated to arrive at an optimal state

assignment. The basic column set is significantly smaller than the

total number of distinct state assignment columns. For example, a five

state machine would have 65,535 distinct state assignment columns, but

the minimum set has only 15 columns (Ref 8: Table 1). One can see that

if all states were investigated, state assignment problems would quickly

% require impossible amounts of computer time, like the classic traveling

salesman problem.

The method for determining the basic state assignment column set

depends on whether the number of states, 4, is equal to one more than a

power of two. If R - (2m + 1) where m is any integer, then the state

assignment columns can be listed directly (Ref 8:874). The y-variables

are subscripted in the same manner as Figure IV-1.

y I y 2 y 3 ... y R-1
1 23 2 -1

In all other cases the y-variables must be generated. The formula

for generating the y-variables is shown below (Ref 8:874). The number,

n, is an integer equal to log (R).

Y Number of bits in assignment
( -) (R -1 ... n-i)

Z.umber of 1 bits in assignment

IV-4



The complements of each of these y-variables must also be

determined for the D flip-flop case. The y-variable complements can be

listed directly, regardless of R, by:

R
y_ where: ii=2 - i - 1

i

The basic column set includes the y-variables generated by the

appropriate method and their complements. An example for R - 5 is

shown below. Note that although the y-variables can be simply listed,

they can also be generated by the method used when R is even. Figure

*IV-2 shows the variables generated by simply listing them and the

corresponding binary values.

y yy yy yy y yy y y y y y
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
0 0 0 1 1 1 1 0 0 0 0 1 1 1 1

.. 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1

1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

Figure IV-2. Basic Column Set For R -5

" 4 The generation method for R is shown in Figure IV-3 for comparison

purposes with R - 5. The variable, rl, refers to the first row as shown

in Figure IV-2. The r variables to the left of the vetical bar are Os

and the variables to the right are is. Each group of row variablesV.

describes a single column shown in Figure IV-2. For example, the first

group specifies y1 5

Y15-
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(5) (rllr2, r3, r4, r5), (ri, r3, r4, r5lr2), (ri, r4, r5, r2jr3),

2" (rl, r5, r2, r31r4), (rl, r2, r3, r41r5)

15) Cr1, r21r3, r4, r5), (ri, r31r4, r5, r2), (ri, r4lr5, r2, r3),
.2- (rl, r5jr2, r3, r4), (rl, r2, r3jr4, r5), (r1, r3, r41r5, r2),

(rl, r4, r51r2, r3), (rl, r5, r21r3 ,r4), (rl, r5, r31r4, r2),
(rI, r4, r21r3, r5)

Figure IV-3. Basic Set Column Generation For R - 5

Step 2 - Cost Estimation. Cost estimation is used to derive the

minimum cost of a particular state assignment column. Cost is defined

as the number of inputs to a two level AND-OR gate array. The cost

estimation method uses a modified Karnaugh map. The inputs are assumed

to have a predetermined binary code. The input codes are arranged

across the top of the modified map exactly like a Karnaugh map. The

state symbcls, S , are listed along the vertical axis of the state

table. The modification assumes that all rows that are a power of two

are group adjacent (Ref 4:1368). "This assumption provides a degree of

adjacency between the S minterms that is as great or greater than can

exist for an actual coding of the S minterms, and consequently it

provides a lower bound on the cost of an excitation expression

.regardless of the coding that may be subsequently assigned to the S

minterms (Ref 4:1369)." Later steps that determine the actual costs of

I. the y-variable state assignment do not follow this last assumption.

Hoe and Ryhne further restrict the cost estimation procedure by

... requiring that unassigned states in the y-variable be assigned a 1 or 0

IV-6
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such that the number of 0's equal the number of l's. They also require

that any group of states that cross the boundary between y - one/zero

contain an equal number of states from each side of the boundary. This

idea is illustrated in the Example section.

The additional restrictions made by Noe and Ryhne result in a set

of minimum numbers that is equal to or greater than the minimum numbers

4 generated by an unmodified SHR procedure. This can reduce the number of

trials made by the Story, Harrison, and Reinhard (SHR) search procedure

(Ref 9:328).4-.

The cost estimation procedure begins by assigning each state in the

state table a 1 or 0 based on the particular y-variable. The unassigned

state table rows are then assigned a 1 or 0 so that the total number of

rows with y - 0 equals the number of rows with y - 1. Don't care

symbols are denoted by a "x". The l's and x's are grouped together like

Karnaugh maps with two exceptions. The first is that groups that cross

the y - 0/y - 1 boundary must have an equal number of terms on each

side of the boundary. The second, discussed above, is that rows that

are a power of two are considered group adjacent.

Once the states have been properly grouped together, the cost

estimate algorithm is shown below. The cost estimation procedure is

repeated for the complements of each of the y variables. The lesser of

'4 the two estimates is then used as the minimum possible cost for the

y-variable in the ordered search.

IV-7
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(L +NT -SLT ;NT > 1
C =NL ; T 1, SLT - 0

(0 ; NT - 1, SLT = 1

Where:

NT - Number of Terms
NL - Number of Literals = m + n - q
SLT - Number of Single Literal Terms
m - log (Number of Inputs)
n - log (Number of State Variables) = log (R)
q - log (Number of Literals in Group)

m, n, and q are integers

Figure IV-4. Cost Equations

This cost estimate applies directly to a PLA. NL, the number of
J

literals, is the number of product terms that must be generated in the

PLA. The area required by the PLA increases proportionately with NL.

NT and SLT are related to the power consumption of the PLA. NT is the

number of pass transistors on a given product term line. The larger NT

is, the more power is required to generate the particular term. SLT

refers to a product term that has only one pass transistor. Power

consumption decreases with larger values of SLT for a given total number

of inputs.

Step 3 - Sort. The y-variables are sorted in nondecreasing order

based on the cost estimate obtained previously. A bubble sort is used

which generally takes 0(na ) time (Ref 11:257). In this case, the bubble

sort does not have a significant affect on the execution time. The sort

is used only once on a small number of integers. These integers are the

IV-8



cost estimates for each of the y-variables. When the integers are moved

in their array, two associated character strings are moved. The

overhead is extremely low since only integers are compared and the

number of sorted items is small. For example, when the number of states

is equal to five, there are only 15 y-variable sets to sort.

Step 4 - Ordered Search. The last step is the ordered search of

the y-variable sorted list for an optimum state assignment. The first

step is to find a valid state assignment. State assignments are made

with n state assignment columns or y-variables. The number, n, is equal

to log2(R). The first assignment scheme is made by pairing the first

y-variable in the sorted list with the appropriate number of successive

variables. A valid assignment has a unique designation for each state

in the state table. Not all combinations of the state assignment

columns form a valid assignments. Once a valid assignment scheme is

found, the actual cost of each y-variable is determined by the same

method as cost estimation except that commonality of terms is not

considered (Ref 4:1369). This means that the restrictions added by Noe

and Rhyne are removed and rows that are powers of two are not considered

group adjacent.

The minimum and actual cost estimates for each y-variable in the

*scheme are then totaled and the minimum and actual cost are compared.

The search stops when the actual cost is equal to the minimum cost or if

" the next state assignment scheme has a higher minimum cost than the

current actual cost. Figure IV-5 shows a flow chart of the search

procedure.

IV-9
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~Figure IV-5. Flow Chart of State-Assignment Optixizton Algorithm
l l(ef 4:1.370)

"" hu"Ple

,. A five state transition table is shown below in Figure IV-6 (Ref

%"'" 9:328). Since the number of states, R, is equal to 5 which is also

I equal to 22 + 1. Therefore, the state column variables can be simply

., IV-10
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listed. They are shown in Figure IV-2. If a PLA were a J-K flip-flop

" . .. device, only these columns would have to be investigated. Since a PLA

acts like a D flip-flop, the complements of these state column variables

must also be investigated. The complements are obtained by inverting

the bit values in the state column variable.

PS NS

1 5 1
2 4 2
3 3 3
4 2 3
5 1 5

Figure IV-6. State Transition Table With Five States

Figure IV-7 shows the state transition table with the state column

variable y applied against the transition table. The y variable

overlays the present state column of the state transition table. States

overlayed by a '1' are replaced by a '1' in the Next State portion of

the transition table. Likewise, states overlayed by a '0' are replaced

with zeros in the transition table. Note that the number of states in

the transition table is now a power of two. The new states are labeled

with a 'x' and represent don't care conditions.
-V.

PS NS

0 1 0
0 0 0
1 1 *1
0 0 1
1 0 1

x 1 1
x 1 1

Figure IV-7. State Transition Table With Y5 Applied
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Actual Cost Calculation. The actual cost for this assignment is

calculated from the table in Figure IV-7. The ones in the state

transition table are assigned binary numbers in an array like manner.

The binary numbers are then changed to a gray code (Ref 12:338). The

%I rows and columns in the transition table are labeled 0 to 7 and 0 to 1

respectively. For example, the one next to the asterisk in Figure IV-6

would be assigned a binary value of 0101. This binary assignment is

derived from the placement of the one in row 2 and column 1. The binary

value is therefore 2 * C + 1. C is equal to the number of columns,

which is two in Figure IV-7. Note that the first three bits from the

left designate the state and the last bit denotes the state transition

column.

This binary number is changed to a gray code through an

exclusive-or operation. The exclusive-or operation is applied to the

most significant bit and a zero. The exclusive-or operation is repeated

for the most significant bit and the next most significant bit. This

operation is "rippled" through the portion of the binary number that

designates the state. Bits that denote the column are not changed.

This is done so that table values in the same column remain adjacent.

In Figure IV-7, only the left-most three bits are changed to a gray

code. The results of the exclusive-or operations form the new gray code

variable. The zero is in effect pushed through the binary variable.

This is shown below:

start zero - 0 / 0101 - binary variable

n:. 0111 - result of exclusive-or

*IV-12
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PS NS

0 1 0
o o 0
1 1 1 2
0 1

x 1 1 2
x 1 1

x1

C.. 3

2 + 2 + 3 + 3 - 10

Figure IV-8. State Transition Table With Y5Applied

Once all the ones in the state transition table have been converted

to a gray code, a standard Quine-NcClusky algorithm is used to determine

* the minimum cover required to implement the table. The cost for the

table is calculated using the equations in Figure IV-4. The groupings

and cost calculations are shown in Figure IV-8. Each group of four

. terms has a cost of two. The group with two terms costs three AND-OK

gates. There are three groups which makes the total cost ten. The

computer representation of one of the four term groups is -11-. The

cost of this group is simply calculated by counting the number of 1s or

Os in the in the term. Thus, this group has a cost of two AND-OR gates.

The cost calculation is repeated for the complement of Y5 1 Y2 6 " The

state transition table for Y2 6 is shown in Figure IV-9. This figure also

shows the grouping and cost calculation. The y-variable with the lower

cost is toed for the cost calculation. In this case, since Y5 and Y2 6 are

equal, y5 is chosen.

V5
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PS NS

1 1 2
01 

0

x 1 1

x

2 + 3 + 2 + 3 - 10

Figure IV-9. State Transition Table With Y2 6 Applied

Cost Estimation. The cost estimation procedure is accomplished in

the same manner as the actual cost estimation. There are, however, two

exceptions. First, the state transition table is rearranged so that

each half of the table has all "one" or all "zero" rows. The "type" of

the row is determined by the y-variable. For example, the first row in

Figure IV-9 is a one row. Figure IV-10 shows the rearranged table of

Figure IV-7 and its cost estimation. The dotted line denotes the

zero/one boundary of the table. All rows in the upper half are either a

zero row or a don't care row. The lower half has only one and don't

care rows.

api%
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PS NS

x 1
0 0 1 2

1 0 1
1 1 2
x 1 1

n 1

3 + 2 + 2 + 3 - 10

Figure IV-1O. State Transition Table With Y5 Applied

The second difference is that groupings that cross the zero/one

boundary. Figure IV-11 shows the rearranged table and groupings for Y26

Since the complement of the Y5 has a lower cost estimate, its value is

used as the cost estimate for Y5.

PS NS_

11
11 2
x 1.. 1" 0

*0 1 0
0 0 0

x 1 1x
2

,', . 2 + 2 + 2 - 6

Figure IV-11. State Transition Table With Y26 Applied
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", *Node List

Node A121: Generate Basic State Columns

*Node A122: Estimate Costs

Node A123: Bin Sort

Node A124: Ordered Search

Node A125: Format

'-.

Data Dictionary

'o

d. Node A12:

Basic State Columns: The binary and decimal representations of the

basic set of distinct state columns discussed in Step 1.

Cost Estimates: The cost estimates generated in Step 2 are

associated with the Basic State Columns.

St. Sorted Cost Estimates: A list of the Basic State Columns and

associated Cost Estimates in nondecreasing order based on Cost

Estimate. This list is generated by Step 3.

Optimum State Assignment: A subset of the Basic State Columns that

form.a valid, optimum state assignment and its actual cost.

The subset contains n state columns and is selected in Step 4.
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lode A12

Nodes A121 - A124 correlate to Steps 1 - 4 discussed above. The

last node, A125 Format, creates a file that is suitable for PRESTO.

Format basically substitutes the optimum state assignment into the

Reduced Symbolic State Table. This creates the binary PLA Truth Table.

.%Io1

4.

.o4"
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Nodes A12
Title: Assign State#
Date: 11 Jul 83
Rev.: 1.0

I1 PLAFST Control

Generate

Basic State
12 Reduced Symbolic Columns Basic State

State Table Columns

Estimate
Costs Cost Estimates

2

Bin Sort
Sorted Cost
Estimates

Ordered
Search Optimum State

Assignment

4

Format
PLA Truth Table 01

45

Figure IV-12. lode A12
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ANALYSIS

Overview

The analysis of PLAFST is divided into three parts. The first part

looks at the purpose and outputs of the various programs within PLAFST.

It analyzes what each program accomplishes. The second part of the

analysis compares PLAFST against benchmark state transition tables used

by others to compare results. Two individual programs, ASSIGN and SYM,

are investigated in detail. ASSIGN, which computes the optimum state

assignments, is also compared against its own options: Simple Assignment

and Gray Code Assignment.

The third part is the sensitivity analysis. ASSIGN is the only

program analyzed in this manner since it requires at least an order of

magnitude more execution time than the other four programs written for

this thesis. The sensitivity analysis uses state transition tables that
'I.

vary only one parameter. The execution time for each state table is

plotted and a Big-Oh analysis is done on the results.

S.o

Prcess

Figure V-1 shows the relationship between the PLAFST shell script

S. ..- and other resident programs on the VAX 11/780. SYM, ASSIGN, CFORM, and

.V-1
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MAKESF514 were written for PLAFST. SYM and ASSIGN comprise the bulk of

the programs created during this thesis effort. CFORM translates

PRESTO's output to the format required by PLAGEN. MlAKESFSM decodes

SYM's output and the SF514_PLA CIF file to generate the SFSII CLL file.

The SYSM CLL file includes the PLA, buffers, and the state variable

interconnections.

CI? Specification

Plot

Figure V-1. PLAIST Structure Chart

STH performs the first data reduction of the symbolic state table.

The symbolic state names are translated to numbers starting with one.

The symbolic input names are ignored. They are required merely for the

programmers convenience. The output symbolic names are converted to

strings of ones and zeros. One string is created for each state in the

symbolic state table. Once the initial data processing is completed,

-Ve
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.. SYN tries to reduce the state table through equivalence partitioning.

The initial symbolic state table and the output from SYM are shown in

Figure V-2. In this case no symbolic reduction is possible. The fact

that an error state was not designated in the original symbolic state

table is shown by a zero at the end of the first line of SYMs output.

INITIAL SYMBOLIC OUTPUT FROM SYM
STATE TABLE

8 1 1 963 2.5 8 1 1 963 2.5 0
A
B 12
C 32
D 34
E 54
F 56
G 7 6

input 1 1 8
output 1
ABCBCDEDEFGFGHAH 00
000000000000 00
output 1 0 output 1 0 O00

.00
DO
00
00
01

.:. .. 10

. Figure V-2. Initial Symbolic State Table and PLAFST Reduced Table

ASSIGN is executed next. It uses the state transition table from

SY. The output strings are placed in an array until they are appended

to the output. ASSIGN does not use them during the state assignment

process. ASSIGN generates the distinct column set for the number of

- states in the state transition table. It then calculates a cost

V- 3
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- estimate for each column set using the transition table and performs an

ordered search to determine an optimum assignment. This process is

discussed in detail in Chapter IV, Example. Two other choices for state

assignment exist. The first is simple assignment. The states are

assigned successive binary numbers starting with 0. In Figure IV-2,

State 1 from SY~s output would be assigned a value of 0000. State 8

A-p" would be assigned a value of 0111. The other option is a gray code

assignment. State assignments are made by the Simple Assignment portion

of the code and then translated to a gray code. Once the state

assignment is determined, an output file like that in Figure V-3 is

generated. Figure V-3 shows the result of the optimum state assignment

process. This data is in the format required by PRESTO.

L4
: o4

A . p16
0000 0000
1000 1000
0100 0010
1100 1000
0001 0010
1001 1010
0101 0110
1101 1010
0011 0110
1011 1110

•.-, 0111 0100
1111 1110
0010 0101
1010 1100

4 0110 0001
1110 1100

Figure V-3. Output fros ASSIGN
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ASSIGN does not consider commonality between PLA product terms.

For this reason, PRESTO is used to reduce the size of the PLA. PRESTO

- was able to reduce the product terms from 16 to 11 in this example. The

output from PRESTO is shown in Figure V-4.

.o4

010- 0010
I--- 1000
--01 0010
1-1 1010
0101 0110

.-.

td-011 0110
1-11 1110
--11 0100
0010 0101
1-1- 1100
0-10 0001

"- "Figure V-4. Output frou PRES

.%-

Iii  •The output from PRESTO is piped through CFORM to PLAGEN. CFORM

acts as a translator. It changes PRESTOs output to a format acceptable

to PLAGEN and adds the CIF number and lambda size to the file. PLAGEN

generates the CIF specification for the PLA that implements the original

symbolic state table. The output including data sent to stderr from

PLAGEN is sent to a file called foo. The data sent to stderr is the

bounds of the PLA. It can appear anywhere in the output file and will

S"usually cause an error if the file is used directly by CLL. For this

reason, MAKE SFSN reads foo and generates a duplicate file with the

bounds data deleted. This includes the newline character that follows

the bounds data. This insures the integrity of the PLA CIF file.

V-5
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* MAKE SFSM uses this information and the state transition table size,

obtained from SYMs output, to generate a CLL file that includes the PLA

CIF file.

Cl is the final program executed. It uses both of the files

generated by MAKE SFSM to generate the final plot of the synchronous

finite-state machine (SFSM) created from the original symbolic state

table in Figure V-1. The SFSN CLL file is shown in Figure V-5. The

plot of the SFSM is shown in Figure V-6.

#include "/usr/lib/local/s ext.cll"
external pla (cif 963 bounds --15,0 140,111)

SFSM

pla(0,0);
iterate 4, 1 16, 0

p' PlaClockln ( 15, --58 );
iterate 2, 1 16, 0

PlaClockOut ( 92, --53 );
wire poly 95, --53 w 2 d 12 1 22 diff u 7;
wire poly 103, --53 w 2 d 22 1 46 diff u 17 ;
wire poly 111, --53 w 2 d 32 1 70 diff u 27 ;

%§

Figure V-5. SF83 CLL File

.
*N
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Benebuark

In this section PLAFSTs performance is compared against the

benchmark state tables and assignment schemes created by other authors.

ASSIGNs options are also compared against each other. The execution

times for PLAFST, ASSIGN, and SYH are provided. The table numbers below

refer to Appendix A. The cost is the number of AND-OR gates required to

implement the state transition table with the given state assignment.

PLAFST only generates a near optimum solution to the state

assignment problem. This is due to the cost estimation algorithm. The

debug option was used to show the internal calculations. PLAFST matched

the cost estimates of Noe and Rhyne for Table A-15 on 7 of the 15 cost

estimates. One of the estimates that did not match was lower than Noe

and Rhyne. The other estimates indicated two to three additional gates

were required. This difference in cost estimates significantly affects

the the ordered search for the optimum state assignment.

However, PLAFST actually calculated a better optimum state

assignment for Table 14. It also matched the optimum state assignment

for Table 12. PLAFST assignments are usually within a few gates of the

"optimum" solutions for the benchmarks state transition tables.

" V-8
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Table V-i. Benchmark Comparison

Table Author State Assignment Cost

Number

6 Hartmanis 15, 51, 170 22
PLAFST 30, 51, 180 23

7 Torng 6, 8, 18 39
PLAFST 9, 15, 26 42

8 Dolotta &
McCluskey 2, 7, 9 40

Torng 2, 5, 17 39
PLAFST 5, 17, 29 42

-~9 Dolotta 3, 6, 19 19
PLAFST 14, 24, 29 25

10 Curtis 15, 19, 21 43
PLAFST 6, 11, 33 63

11 Curtis 67, 101, 106 75

PLAFST 26, 67, 106 114

*12 Dolotta 15, 60, 85 20
PLAFST 15, 60, 85 20

13 Dolotta, 3, 21, 36 36
PLAFST 21, 26, 54 39

V .14 Dolotta 27, 46, 105 81
PLAFST 170, 180, 198 73

15 Noe & Rhuyne 4, 7 41
PLAFST 2, 14, 24 14

Table V-2 shows the execution times for PLAFST and ASSIGN for each

* of the tables in Appendix A. Execution times are also given for the

Simple assignment and Gray Code options of ASSIGN. PLAFST and its

associated programs were executed on the AFIT VAX 11/780 located in

building 641, WPAFB, OH. The times in Table V-2 are in seconds and wete

provided by the UNIX operating system command "time". The smallest
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"" :.-. division is tenths of a second which makes differences of one-tenth

insignificant.

Table V-2. Execution Times (Seconds) for PLAFST and ASSIGN

a'l

Table # States PLAFST ASSIGN
Number /# Inputs Optimum Simple Gray

A-1 3/1 16.5 0.5 0.2 0.3
Figure II-1 4/3 56.2 1.6 0.5 0.7
A-2 4/1 17.2 0.5 0.3 0.4
A-3 5/1 21.8 2.1 0.3 0.6

A-4 6/1 26.2 2.9 0.3 0.6
A-5 7/1 26.9 2.6 0.3 0.6
A-6 8/1 28.0 2.3 0.4 0.5
A-7 5/2 43.0 9.5 0.3 0.7
A-8 5/2 42.3 8.9 0.4 0.6
A-9 5/1 24.0 2.3 0.3 0.6
A-10 6/2 50.3 14.7 0.3 0.5
A-11 7/3 197.5 73.2 0.7 1.3
A-12 8/1 25.8 2.1 0.4 0.7
A-13 6/2 52.4 14.0 0.5 0.7

' A-14 8/2 55.4 7.3 0.5 1.0
A-15 5/1 26.0 2.6 0.4 0.4

Several general observations can be made from this table. In all

cases, Simple and Gray took less time than Optimum. This is expected

since Simple and Gray both execute in O(n) time. The next section shows

that ASSIGN is greater than O(n2 ). Specific comparisons are difficult to

make since several parameters vary between the state transition tables.

The two significant parameters for ASSIGN are the number of states

- and the number of inputs. As the number of states increases, so does

the number of distinct state column sets that must be generated. Table

V-10
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V-3 shows the number of distinct state column sets for up to sixteen

states. The number of distinct state column sets rises exponentially

after eight states.

Table V-3. Number of Distinct State Assignment Column Sets
(Ref 4:1367)

Number of Distinct State
States Column Sets

2 1
3 3
4 3
5 15
6 25
7 35

. 8 35
9 255
16 6435

An increase of one in the number of inputs will double the size of

the state transition table. Table V-2 shows that state transition

tables with close to eight states or more than one input, require

significant increases in execution time. State transition tables with

seven states and three inputs like Table A-11 have greatly increased

execution times.

The optimum state assignment costs for ASSIGN are compared with the

simple and gray code assignment options in Table V-4. The table shows

that in all cases the optimum state assignment costs less than the

simple or gray assignments. The simple assignment is cheaper than the

gray assignment for some state tables and more costly for others. There
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is not any pattern as to which of these schemes is better for any given

state table.

Table V-4. Optimum, Simple, and Gray State Assignment Comparison

Table ASSIGN SIMPLE GRAY
Number

A-1 9 20 16
Fig. I-1 17 38 20
A-2 14 17 16
A-3 17 25 33
A-4 21 39 42
A-5 26 51 47
A-6 23 26 41
A-7 42 62 76
A-8 42 65 62
A-9 25 42 29
A-10 63 107 103
A-11 114 160 168
A-12 20 21 31
A-13 39 102 132
A-14 73 99 97
A-15 14 27 29

Table V-5 points out some interesting facts about where ASSIGN

spends most of its time. The execution times and number of iterations

can not be directly compared since different state transition tables canI. cause great differences in the Quine-McCluskey algorithm. Some general

observations and assumptions can still be made though.

The majority of iterations are small numbers. The worst case for

state tables with more than four states is that three sets of two state

assignment columns must be calculated for each iteration. In practice,

,5"..V-12
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the number of calculations is greatly reduced since ASSIGN remembers the

cost associated with each state column set and does not recalculate it.

Table V-3 shows the number of distinct state assignment column sets that

must be calculated. For example, Table A-14 has eight states which

means that 35 state column sets must be calculated. This translates

into 70 state tables which must be reduced with the Quine-McCluskey

algorithm.

Table V-5. ASSIGN: Execution Time and Number of Iterations

Table # States ASSIGN
Number /f Inputs Optimum Iterations

A-1 3/1 0.5 1
Figure 1I-1 4/3 1.6 0
A-2 4/1 0.5 2
A-3 5/1 2.1 2
A-4 6/1 2.9 5
A-5 7/1 2i6 2
A-6 8/1 2.3 5
A-7 5/2 9.5 2
A-8 5/2 8.9 1
A-9 5/1 2.3 9
A-10 6/2 14.7 29
A-11 7/3 73.2 2
A-12 8/1 2.1 1
A-13 6/2 14.0 14
A-14 8/2 7.3 4
A-15 5/1 2.6 10

However, Table A-14 takes only four iterations to arrive at a

solution. The worst case is that 24 state tables would have to be

solved. As discussed, above this number is probably considerably less.

Thus, it is reasonable to assume that ASSIGN spends most of its

execution time calculating cost estimates. This seems to be borne out
*. .*'.1
C .
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.... by state tables with zero or one iterations which still have a

significant amount of execution time. This becomes important for future

• .efforts to reduce PLAFSTs execution time. Faster methods of estimating

the cost of a state column set may yield great decreases in the

execution time.

Table V-6. SYh Execution Times

Table # Original # Reduced Time (s)
Number States States

A-1 7 3 0.2
A-2 6 4 0.2
A-3 6 5 0.1

Table V-6 shows the execution times for SYM with those tables that

were reduced jymbolically. Times for other state tables rangq from 0.1

to 0.3 with no state reduction.

Seni tivity

This analysis tested ASSIGNs sensitivity to the two parameters

discussed earlier, the number of states and the number of inputs. The

number of cost estimations greatly increases with the number of states.

This is shown in Figure V-3. Each additional input will double the size

of the state transition table since PLAFST requires that the SFSM be

completely specified.
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State transition tables were constructed that varied only one of

these parameters at a time and tried to maintain the same type of state

transitions throughout the test data. Figure V-7 shows the first,

middle, and last state transition table used for the state sensitivity

analysis.

%...

First State Table Middle State Table Last State Table

2 1 1 950 2.5 0 5 1 1 950 2.5 0 9 1 1 950 2.5 0

22 23 23
1 1 3 4 3 4

45 45

00 55 56
10 11 67

78
00 89
00 9 9

00 11
* 00

10 00
00

00
00
00

:.1 00
00
00
10

Flgure V-7. State Transition Tables Used for State Sensitivity

The progression used to extend the state transition tables can be

easily seen. Each state transitions to the next state on a zero input
-:.. andThe nrgetio ne o tnd ah one tasto al8c

and to the next state plus one on a one input. This process continues
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until the highest state is reached. All states after this point

transition to the highest state except the last state. The last state

transitions to the first state in all cases. Since ASSIGN does not

consider the outputs, only one output is high in order to keep the

solution from being trivial. These state transition tables can

transition to any state and are strongly connected. The execution times

for the eight test state transition tables are in Table V-7.

Table V-7. Execution Times for State Sensitivity Analysis

Number of States Time (s)

2 0.2
3 0.4
4 0.4
5 2.0
6 2.7
7 3.0
8 2.2
9 1000+

.!

The results are plotted in Figure V-8. The series of curved plots

S. is grossly approximated by the upper straitht line. This gives an upper

bound to the time vs. state response of ASSIGN. The upper bound can in

turn be approximated byt

(log 2 n)-1
O(n) n
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The data shows that ASSIGN works well for state transition tables

with less than nine states. When state transition tables with nine or

more states are solved, the execution time grows exponentially to very

large values. It is interesting to note that when the number of states

- is exactly equal to a power of two, the execution time decreases

significantly.

The state transition tables for the input sensitivity analysis

start with the five state transition table used for the state

*sensitivity analysis. The next three state transition tables are shown

in Figure V-9. Each time the number of inputs is increased, the rows in

the state transition table are repeated.

5219502.50 5319502.50 5419502.50

2345 234523.5 2345234523452345
3455 34553455 3455345534553455
4555 45554555 4555455545554555
5555 55555555 5555555555555555

00000 00000000 0000000000000000
00000 00000000 0000000000000000
00000 00000000 0000000000000000
00000 00000000 00000P000000000
10000 10000000 100000000000000

Figure V-9. State Transition Tables for Input Sensitivity Analysis

V-18

%-i



1000
. ,. %oo

100

-Time

(seconds)

1

0 12 3 4

Number of Inputs

Figure V-1O. Execution Times for Input Sensitivity Analysis

V-19

_4

• " . -. *



Table V-8. Execution Times for Input Sensitivity Analysis

Number of Inputs Time (s)

.4" 1 2.0
2 11.4
3 82.3
4 589.7

'.

The data from the input sensitivity analysis is shown in Table V-8

and plotted in Figure V-1O. The results are a straight line on a

logarithmic plot. They can be closely approximated by :

O(n) _ nn log 2 n

O The test data shows that ASSIGN is restricted to state transition

tables with less than nine states and four inputs for reasonable
.4

execution times. ASSIGN also begins to require very large amounts of

memory to run. The array sizes had to be increased from those in

Appendix E in order to run the five state transition table with four

inputs.

V-2
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CONCLUSION

Conclusions

PLAFST meets its goals. It converts a symbolic state table into an

integrated circuit. The integrated circuit includes a programmable

logic array, clocked buffers, and interconnected state variables.

PLAFST works well for symbolic state tables with less than nine states

and four inputs. Symbolic state tables larger than these constraints

cause inordinate increases in execution times.

PLAFST produces a near optimum state assignment that in some cases

meets or exceeds published benchmarks. In other cases, its state

assignment cost is relatively close to that of the published benchmarks.

PLAFST is sensitive to both the number of states and number of inputs in

the transition table. An exponential growth curve for execution time is

exhibited for increases in the number of states or the number of inputs.

Overall, PLAFST provides a good computer aided design (CAD) tool

for limited scale projects. Within its limitations, PLAFST will allow

the synchronous finite-state machine (SFSM) designer to concentrate on

the details of the SFS4 design rather than those of the integrated

circuit.

VI-1
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lecomendationi

There are three recommendations for follow on thesis work on

PLAFST. PLAFST should be integrated into the AFIT CAD environment.

This would include a user manual for each of the programs developed for

PLAFST and additional options for partial outputs.

The state transition tables used to test PLAFST represented

benchmarks and state transition tables designed to test sensitivities.

A Monte Carlo method could be used to develop a uniform set of state

transition tables to throughly test and analyize PLAFSTs performance.

This approach could detect the portions of PLAFST that could most

benefit from further attention and increase the capabilities of PLAFST.

The analysis should also investigate memory usage versus state table

size and the merits of allowing only 2 state tables. Figure V-8 shows a

significant execution time decrease for state tables where the number of

states is a power of two.

The third recommendation is to use the assumption that PLAFST

spends the majority of its time calculating cost estimates. If this

assumption is true, then a faster cost estimation algorithm would

greatly increase PLAFSTs capabilities. A code profiler would help to.4%.

identify the portions of PLAFST most often executed. The cost

estimation algorithm should be changed to use an intuitive process or

artificial intelligence techniques rather than the exhaustive

Quine-McCluskey solution to calculate the cost of a particular state

assignment. Another approach would be to use the n-cube algorithm like

PRESTO.

K. -
.4 VI-2
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APPENDIX A: TESTING

Overview

PLAFST was tested in two phases. The first phase ensured that the

PLAFST programs were logically correct. The next state tables in Tables

"" A-1 to A-6 (Ref 3:22, 48) were used to test SYH.C which performs the

,"• .-symbolic table reduction. Functional testing of ASSIGN.C which makes the

optimum state assignment was done primarily with Table A-15. This table

was used by Noe and Ryhne in their published papers on modifications to

~q the Story, Harrison, and Reinhard procedure. Consequently, they provided

detailed intermediate results of their procedure for this state table.

This information was very helpful in determining ASSIGN.C's accuracy.

m.4

.. *The second phase analyzes the performance of PLAFST's optimum state

assignment algorithm. Analysis of PLAFST includes final state

.'.. assignment, cost, and execution time. Tables A-6 through A-14 (Ref

4:1372) are benchmark next state tables used by Story, Harrison, and

leinhard (SHR) to compare their method with other state assignment

algorithms. PLAFST options for straight binary and grey code assignments

'4 are also compared against the optimum and benchmark results. A

sensitivity analysis is done with additional state transition tables

which vary only one parameter. The analysis and results are in Chapter

"A-1
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Logical Testing

PLAFST was executed with the debug option to show the input file

conversion into the final SFSN PLA. The symbolic state tables used

during logical testing are relatively short and PLAFST's manipulations

were easily checked by hand. These state tables also checked the

. symbolic state reduction capabilities of PLAFST. The benchmark next

state tables used in the analysis phase are only intended to compare

optimum state assignments. They can not be symbolically reduced.

Analysis

Tables A-6 through A-14 are modified from the original SHR analysis

by the addition of outputs. None of the state assignment schemes

consider the outputs, but PLAFST requires outputs to correctly process

:" the state tables. These state tables are benchmarks used by SHR and

others. PLAFST's results are compared to the results of the other state

assignment schemes for the D flip-flop. The authors and results of each

of these methods are listed in Table A-16. As mentioned above, the

analysis is based on the final state assignment, cost, and execution

time. The execution times for each state table are only used as a guide

to PLAFST's eficiency, since these times are not available for the other

methods. Cost A, Table 16, is determined when commonality between

product terms is not considered. Cost B considers product term

a commonality which in some cases reduces the cost significantly. PLAFST

costs will be compared to Cost A since PLAPST's state assignment cost is

A-2
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calculated before PRESTO is used to reduce the PLA through product term

.. commonality. The entire analysis, including the sensitivity analysis is

contained in Chapter 5.

I.-.

Tables

Table A-i Table A-2 Table A-3 Table A-4

PS xI x2 PS xl x2 PS xl x2 PS x1 x2

A B/0 C/0 A B/ C/O A B/a C/O A B/O C/O
B C/O E/O B A/0 D/O B D/O A/0 B D/1 E/O
C A/i F/O C E/O B/1 C C/O F/O C A/0 B/i
D GIO /O D A/0 B/a D A/0 C/O D E/O FI
E F/O GIO E C/o A/i E C/O FIO E FIO FIO
F D/I C/O F E/O D/i F A/i DiO F C/i E/0
G C/O B/0

Table A-5 Table A-6

* PS xi x2 PS xI x2

A B/O C/O 1 4/0 7/0
B D/o E/O 2 3/0 8/0
C E/0 A/0 3 5/0 6/0
D B/0 A/0 4 6/0 6/0
E F/a G/0 5 8/0 3/0
F C/0 G/0 6 7/0 4/0
G B/ F/i 7 1/0 2/i

8 2/i 2/0

Table A-7 Table A-8

PS Xi x2 x3 x4 PS xi x2 x3 x4

1 3/0 i/o 2/0 4/0 1 1/0 i/o 2/0 2/0
2 1/0 5/0 2/0 4/1 2 2/0 3/0 1/0 2/1
3 3/0 4/0 5/1 3/0 3 3/0 5/0 5/1 3/0
4 5/0 1/1 2/0 4/0 4 4/0 2/1 3/0 3/0
5 5/1 4/0 5/0 3/0 5 5/i 5/0 4/0 i/o

,h A-3



Table A-9 Table A-10

PS x x2 PS xl x2 x3 x4

1 1/0 2/0 1 4/0 5/0 5/0 2/0
2 2/0 3/0 2 1/0 4/0 3/0 5/0
3 3/0 4/0 3 6/0 3/0 5/0 2/1
4 4/0 5/1 4 3/0 5/0 3/1 1/0
5 5/1 1/0 5 2/0 3/1 5/0 5/0

6 1/1 6/0 3/0 3/0

Table A-11 Table A-12

PS xt x2 x3 x4 x5 x6 x7 x8 PS x1 x2

1 1/0 1/0 1/0 1/0 1/0 1/0 1/1 1/0 1 1/0 2/0
2 2/0 2/0 2/0 2/0 2/0 2/1 2/0 2/1 2 3/0 2/0
3 3/0 7/0 6/0 3/0 2/1 5/0 4/0 2/0 3 3/0 4/0
4 4/0 2/0 6/0 4/1 2/0 2/0 4/0 2/0 4 5/0 4/0
5 5/0 7/0 2/1 5/0 2/0 5/0 2/0 2/0 5 5/0 6/0
6 1/0 6/1 1/0 1/0 6/0 4/0 1/0 6/0 6 7/0 6/0
7 1/1 1/0 7/0 1/0 7/0 1/0 5/0 7/0 7 7/0 8/1

8 1/1 8/0

Table A-13 Table A-14 Table A-15

PS xIl x2 x3 x4 PS x1 x2 x3 x4 PS xl x2

1 1/0 4/0 5/0 2/0 1 1/0 2/0 6/0 1/0 1 5/0 1/0
2 4/0 1/0 2/0 5/0 2 2/0 3/0 2/0 4/0 2 4/0 2/0
3 1/0 4/0 3/0 2/1 3 5/0 3/0 3/0 3/0 3 3/0 3/0
4 4/0 1/0 2/1 3/0 4 2/0 6/0 5/0 3/0 4 2/0 3/1
5 1/0 6/1 5/0 2/0 5 5/0 1/0 8/0 5/1 5 1/1 5/0
6 6/1 1/0 2/0 5/0 6 7/0 1/0 6/1 6/0

7 7/0 7/1 7/0 1/0
8 8/1 7/0 8/0 5/0

-A-4
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Table A-16. State Assignment Method Comparison

Table Author State Assignment Cost
Number A B

6 Hartuanis 15, 51, 170 22 22

7 Torug 6, 8, 18 39 39

, 8 Dolotta & McCluskey 2, 7, 9 40 40

8 Torng 2, 5, 17 39 39

9 Dolotta 3, 6, 19 19 17

10 Curtis 15, 19, 21 43 43

" 11 Curtis 67, 101, 106 75 75

12 Dolotta 15, 60, 85 20 20

-. 13 Dolotta 3, 21, 36 36 33

14 Dolotta 27, 46, 105 81 68

15 Noe & Rhyne 4, 7, 14 12

V
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User Manual

PLAFST(1) UNIX Programmer's Manual PLAFST(1)

NAME
plafst - PLA implementation of a synchronous finite-state machine
(SFSM)

plafst [ -s ] [ -d ] [ -sa, -gc ] < symbolicstate.tableg ," DESCRIPTION
PLAFST is a program that generates a TLA with clocked input and
output buffers from a symbolic state table. The symbolic states
are reduced using equivalence partitioning. An optimum binary
state assignment is made. The state v&riable assignment and cost
is sent to the standard error file. The cost is defined as the
number of AND-OR gates within the PLA. The state outputs are
properly interconnected. The buffers are PlaClockIn and
PlaClockOut from the Stanford nMOS Cell Library. PLAFST generates
both CLL and CIF descriptions of the SFSM and plots the integrated

..* circuit.

The options for PLAFST are:

- -8 Generate the PLA only. Do not include the buffers or state
variable interconnections.

-d Debug. Generates detailed information during the SFSM
generation process.

-sa Simple Assignment. The states are assigned binary numbers
in the same order that they appear in the symbolic state
table file.

-gc Gray Code. Same as Simple Assignment except that the
binary values are converted to a gray code.

One state can be designated as the error state. Any undefined
states will transition to this state. However, use of an error
state will degrade the optimum solution. An error state has an
asterisk (*) as its first character.

To use PLAFST you must create a symbolic state table in the format
shown below:

- of states #_of inputs I of outputs CIF lambda #

Symbolic state name_#1

B



Symbolic-state name_#n

Input name_#1

a-°
Input name_#n

Output name_#1

Outputname #n

Next State Array

Output Array

Where # states is the number of symbolic states in the table
# inputs is the number of inputs to the SFSM
# outputs is the number of SFSM outputs
CIF # is the number that the CIF symbol will have
lambda # is the lambda scale factor for the CIF file

Symbol names are 25 characters or less, including the alphabet, 0 -
9, and the underline character, . The characters can be in any
order and case is significant. The order of the symbolic names is
critical. PLAFST uses their order in the file to decode the Next
State and Output arrays.

The Next State Array contains # states times 2 raised to the
*'# #-inputs Symbolicstate names. The array contains # states rows

and 2 raised to the #_inputs columns. The first row corresponds to
the first Symbolicstatename in the file.

The Output Array has the same number of elements as the Next State
Array. If a state has no outputs for a given input, then a 0 must
appear in the appropriate place in the file. If several outputs
occur during a particular state, their names must be separated by
slashes, /, and any number of spaces.

An example is shown below:

/* # states #inputs #outputs CIF # lambda #
4 35 950 2.5

/* Designated error state and first symbolic state */
*HG
HY
FG /* Symbolic state names */
FY

car
"4 longtimeout /* Inputnames *1

B-2



short timeout

a
hO
hi /* Output names */
fO
fi

HG HG HG HG HG HG HY HY
HY FG HY FG HY FG HY FG
FY FY FY FY FG FG FY FY /* Next State Array */
FY HG FY HG FY HG FY HG

fo fo fO fO fOO 0 fO/s.
hi/fO hi/fO /s hi/f0 hl/fO/s hi/fO
hI/fO/s hi/fO hi/fO/s hO/s hO/s hO/s /* Output Array */
hO/s hO hO hO/s hO/s hi/o hi/fO/s
hi/fO hi/fO/s hi/fO hl/fO/s hi/f0 hl/f0/s

S.. - NOTE: The comments shown in this example can not be included in the
input file!

SUE ALSO
presto, plagen, cll

". IDOGS
___The current state assignment algorithm produces a near optimal

solution only. The solution is still less costly than either
simple or gray code assignment schemes.

.,,

B-3
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PLAFST

0 PLAFST Is a shell script which Intlstes the various

IF programs that operate on the symbolic state table given
0 In the Input file.
set noglob
If (Sargv 5)then

echo Too many arguments In the comand line
exlt(I)

endif
foreach I (Sargv)

If( "Si* - -dc ) then
set debug - -d

else If C *$I* - -s ) then
set stop a -s

else If C *SIP - *-saw ) then

set simple - -sa
else If C *S "i -- gc" then

set grey - -gc

endi f
end
If C SsImple && $?grey ) then

echo Two assignment methods were chosen I
eitC
endlf

If ( Msip le ) then
set code - -sa

else If ( $?grey ) then
set code - gc

endIf

If C S?dbug 3 then

sym -d sym.out
If ( Scode ) then

assign -d Scode assign.oUt < sym.oat
else assign -d asslgn.out < sym.out
endIf

else syR sym.out
If ( S?code ) then

assign $code assign.out < sym.out
else assign assign.out - sym.out

ondIf
endif

presto 4 assIgn.out I cfrm sym.outl plagen 34 foo
n akesfe foo sym.out ) sfsem.cI I

rm fo

If ( SMstop ) then
exltCO)

endif
Gil -is -g5 sfsa.cll SfSm ia.dif
echo ell -is -C sfsm.cll sfsm pla.clf

C-I
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SYI4.C

/* SYM.C - Fixed arrays 9I
I* SYMREDUC - symbolic state table reduction checks the Input file for

errors and reducei tie symbolic state table. This program

functions as a preprocessor to ASSIGN states. SYMREDUC
uses IO redirection for Input and output 9/

fInclude <stdlo.h>
#define TRUE I
idef ine FALSE 0
#define MAXSYMBOLS 100 /* Maximum number of symbol names for states,

Inputs, or outputs 9/

#define MAXCOMBIN 500 /* Maximum for numinp * noutputs 9/

#define MAXLEN 25 + 1 /* Maximum length for symbol names plus I for
string termination 9/

#define EOR -2 /* End of Record 9/

#define EOP -1 /* End of Partition 9/

#define NUNCOL 80 / Number of columns on standard CRT
/* Used for visual output only - does not affect files 9/

/9 GLOBAL VARIABLES 9/

static Int debug - FALSE, errorstate - NULL;
static int nstates, ninputs, noutputs, symbol, numinp - 1;
FILE *fout, *fopen();

float lambda;

/9 MAIN PROGRAM 9/

main (argc, argv)
Int argc;
char *argvll;
S
tnt flog;
char stiats(MAXSYMBOLSIMAXLEN), InputsIMAXSYMBMlS)[MALEN),

outputs(1AXSYMBOLS]IMAXLEN), otable (AXSYMBGLS]MHAXCOMBIN)
Int stable[MAXSYMBOLS)IMAXCOMBIN) ;
register In+ J, k;

If Cargc 3)

debug - TRUE;
* If ( (argv(1)(0) 1- 1-') II (argv)IlJI) I- 'd') ) error (1);

foul - fopen argv[2, ww");

else If Crgc 1 2)
four- fopen C argv(11,"w");

else error(I);

If ( fout NULL ) error(9);

% If C debug )

D - I*,* . 0 - . d



-- ~~~~7 IF. 7%

.-

fprlntf(stderr,* Hello! You are now In the PLAFST DEBUG ZONEIn");

flag - scanf("%d %d %d %d %f",&nstates, &nlinputs, &noutputs, &symbol, &lambda);
If(Cfliag - 0)Il(flag - EOF )) error(2);

for ( J- 0; J < nnputs; J++)
numinp - numInp * 2 ; /* Numinp equals 2 raised to the ninputs */

if (debug) /* PrInt symbolic state table values from above

fprtntf(stderr,"The symbolic state table values were read In );

fprintf(stderr,"correctly. Their values are : \n");
fprlntf(stderr,"nstates %d, nInputs %d\n',nstates, ninputs);
fprlntf(stderr,Onoutputs %d, CIF symbol %d\n",noutputs, symbol);
fprlntf(stdrr,"lambda %I.lf numinp %d\n\n",lambda, numinp);'!|1;

/* Load the character arrays from the Input fIle. C/

SIf ( debug )
fprintf~stderr,"The symbolic names are now being loaded. n n");

-. load C states, nstates );
load C Inputs, ninputs ); /* Inputs are never used - Included in the Input

file for clarlty only

load ( outputs, noutputs );

if1 debug

for C J-0; J < nstates; J++)

fprIntfCstderr,"MAIN: %s \n", statesij]);
for ( J -0 ; J < ninputs; J++)

fprintf(stderr,OMAIN: %s\nw,InputsIJJ);
for ( J - 0; J < nortputs; J 4+)

fprIntf(stderr,"MAIN: %s\n",outputs(J));

If C debug )
fprlntf(stderr,"The error state number Is: %d.\n",errorstate);

/* Load +he state truth table Integer representations for the state names.
the first symbolic state In the Input file becomes state 01 */

loedatable( stable, states );

for PESTO *

IoadotableC otble, outputs );

If debug )
fprintf(stderr, MIN: We are about to enter Reduce\nw);

0-2
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reduce( stable, otable ); /* Reduce the given symbolic state table /

.. :- format( stable,otable ); /* Format the state table Information for ASSIGN 0/

fclose(fout);

""/0 LOAD - loads character strings of maximum length MA)LEN /

load( p, num)

char p1MAXSYMBOLSICMAXLEN];
lnt num;
S

Int J, k, strleno;

If ( debug)
fprintf(stderr,"LOAD: the number of variables to load Is %d~n*,num);

for j - 0; j < num; J++)FS
scanf("%s",p[J] );
If ( pij][0] - I*1)

for C k - 0; k < MAXLEN - 1 ; k++)
p[j][ki - pIjl[k + 11;

errorstate - J + 1;
S

if C strlen(pIJ) > MA)LEN - 1 )
pIJ]MALENI] = 0; /* Terminate the string if too long 0/

If ( debug )
fprIntf(stderr,"LOAD: %s~n",p[J);

./* LOADSTABLE - loads STABLE with a copy of the Input state array.

Symbolic states names are replaced with Integers to denote states.0/

loadstable(stable, states)
Int stable[MAXSY4BOLS] MAXCOIBI NI;
char states IMAXSYflOLS IEMAXLEN];

Int J, k, I, flag, match, *p, MAX - 1AXL F;
. char strIng4A)LEN], c;

If (debug)

fprIntf(stderr,Numwerical Next State Table.\n\nw);
fprtntf(stdorr,*LOADSTABLE: Input Term # Term State O\n");

- for J - 0; J 4 nstates; J++)

S-3
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S

p - stableij);
If ( debug )

fprintf(stderr,*LOADSTABLE: %d\n",numinp);

for (k w 0; k < numinp ; k++)
S

flag - scanf("%lsw,strlng); /* Get the first character /
I -0;

while C (C c - getchar() ) I- ')&&( c I- I n') )
If C I < MAXLEN )

/* Tests if variable Is longer than */

stringt ++1 I - c; /* MAXLEN characters. Ignores

/* additional characters */

string[ ++1 I - 0; /* Terminate the string *1
If ( debug )

fprintf(stderr,"LOADSTABLE: %d. %s 0, k, string);

match - FALSE;
for (I - 0; 1 < nstates ; I++) /* Search for a match with the

symbolic state names /

If ( debug )

fprintf(stderr," %s %d 0,statestI , I);
If ( strcmp( string, states(il) - 0)

LS

If ( match ) error(8); /* Two indentical symbolic names */
if ( debug )

fprlntf(stderr," %d \n", ( I + 1));
*p++ - + 1;
match -TRUE;
break;
S

If ( match - FALSE ) error(6); /* No match with symbolic state names /
If ( (flag - O)ll(flag - EOF) ) error(5);
It ( debug )

fprIntf(stderr,.\n");

/* LOADOTABLE - Loads OTABLE with character strings suitable for PRESTO
Example: fO is the fourth of five output variables In the Input file.

*.' It is the only output variable listed for a particular

state/input combination (NODES) In the output array.
LOADOTABLE generates the character string "00010".

C/

'p.

loodotable( otable, outputs )
char otableIHAXSYMBOLS)IMAXCOIMIN], outputs[MAXSYMBOLS|[MAXLEN];

Int J, k, 1, cnt;
' .. char c, strlngl[MALENI, *p;
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If I debug )
fprlntf(stdorr,"Output table character strings \n~n*);

for 0J - 0; J < nstates; ++)

for ( k - O5 k < numInp * noutputs ; k++)
otabletJ]Ik) - '0';

for (k - 0; k < numinp * noutputs 5 k +- noutputs)

for (I - 0; I < noutputs; I++) /* Max number of outputs for a given
state/input combination /

cnt - 0;
scanf( "$Is*, &c);

If ( debug )
fprIntf(stderr,"LDOTASLE: %c\n",c);

/* Get the first non-white character */

If (c - '/1) /* Get next character */

scanft( "%Is. &c);

else If ( I 1- 0)

ungetc(c, stdin);
break; /* Got all of the outputs for this NODE */

stringlO) - c;

while c c - getc(stdin))

If c c-- 1 ') break;
else If ( c - 1/) § ungetc(c.stdin); break; I
else If ( c - 1\n') break;
else If ( c - EOF) break;

If (debug)

fprintf(stderr," LDOT: c Sc"c];

If C cnt < 1AXLEN - 1 ) strlng(++cntl - c;

strlng[++cnt) - 0; /* Terminate the string */
If (debug )

- " dfprintf(stderr,"LOADOTABLE: string s Jd kd ",strIngJpk);
/* Print the string. */

for C cnt - 0; cnt noutputs; cnt+)
If (strcmp(strIngoutputs~cntI) - 0) otable(jilk + cnt - 11°;

If C debug )
fprIntf(stdrr."\n");

otableIJl(k + noutputs - I I n 0; /* Terminate the string for this NODE 0/

i C debug )

fprintf(stderr,0LOADOTABLE: Ss\notabletJ));
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* 1* REDUCE - reduces the symbolic state table '/

"*0 reduce( stable, otable )
Int stab eIsAXSYMBOLS IMAXCO IN];
char otab leIMAXSYMBOLS I [MAXCOM IN ];

Int J, k, I, cnt, cntl, count, partition[UAXSYMBOLS * 41,
*pil, 'p12, 'p13, change - TRUE, pass - 0, done, test - FALSE;

Int stat(MAXSYMBOLS], ptableoMAXSYMBOLSIEMAXCOIBINI ;

% . / Partition requires at most nstates * 2. Nstates * 4 Is used
to allow for reparitionIng during the symbolic state reduction. /

• . /' Partition based on outputs 'I

It ( debug )
fprlntf(stderr,"REDUCE: \nv);

p1l - partition;

cnt - 0;
for (J 0; J nsta8 s ; J++)S

4pass - FALSE;
for C p12 - partition; p12 < pil; pil2++ )

It C debug )
fprintf(stderr,MREDUCE: p12 $d, *p12 Sd~n",pI2-partItIon,*pi2);

I 1 'p12-- J + I ) pOss - TRUE;

If C pass ) continue;

/* Skip states already In Partition.

J + I Is used becuase the Stable and Otabte reference
is always one less than the state number the
reference points to. Applys to k + i below also. 'I

for (k a J ; It - nstates ; k++)
if ( strcp ( otableiji, otablelki) - 0)

Opll+ a k + 1;
If (debug)

S

fprIntf(stdarr,UREUDCE: pll %d, 'pll %dc,pil-partltlon-1,*(pll-));
fprtntf(stdrr,, J Sd, %ok %d~n, J, k);
£

S

*pl1- EOP; /' Set End of Partition '/

If ( debug )

fPrintf(stderr,REDUCEt pl1 %d, 'pil Sd\n",pl1-parttlon-l,*(pll-1));
cnt4

4. ' pl1 = COR;

If (debug)

fprintf(stderr,'REDUCE: Initial number of partitions Is: %d W, cnt);

• " -. prnt( partition );
-. - .
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It I cnt - nstates)
• S

"prlntf(stdrr,"No State Reduction possible. \n");
return;
S

/* Symbolic State reduction /

while t change )
I
change - FALSE;

If C debug )
fprintf(stdrr,*REDUCE: SymboLic state reduction pass 0 Sd.\nm, pass++);

cntl - 0; /* Partition Counter */
for (pli - partition; *pil I- EOR; pil++)

swItch(pil)
5 /* Each state is listed In Partition only once. Generate

State table of each symbolic state's partition. */
case NULL: break;
case EOP: cntl++; break;
default: statet*pIl - 11 - cntl;
S

p13 - pill; / Set 13 equal to LOR /
If Cdebug)

fprlntf(stderr,"Symbolic State Parltion n);for ( J -0; J < nstates; J++)

fprlntf(stdarr,*State: %ld Partition Sd~n* , J+1, state[J]);

prnt( partition );
fprIntf(stderr,"\nState Transitions \n");
S

for( 0'-O; J < nstates ; J++ ) /* Convert state numbers to partition*/

If C debug )
fprintf(stderr,.%d. DJ + 1);

for k a O; k < nuinp; k++) /* numbers /
S

ptebletJ][k] - state I stable[j)[k] - 1 3;
If ( debug )

V fprlntf(stdrro %d", ptable[JI]kI);
$

if ( debug)
fprIntf(stdrr,"\n");

If C debug-)
fprintf(stdrr,*RDUCE: partition based on transitions. \n*);

pill a partition; /* Reset pil to the beginning of Partition /
while (*pit I- EOR) / Repartltlon states based on transitions '/

I / between the last set of partitions /
, ., done w FALSE;

for C p12 - pli + 1; *p12 I- EOP; p12+)
S

D-7

'P... a . . ......... , ..... a;.. .:' .... ,..... ..... .;... .... : . .. ',;



I f (debug)
S|

fprintf(stdrr,"The states under consideration are');
fprlntf(stdorr," Sd and %dkna, "pll, "p12);

for (J - 0; J 4 numinp; J++)
fprintf(stdsrr,* Sd",ptablelpll - 1](JI);

fprIntf(stderr,\ n");

for (J w 0; j 4 numlnp; J++)
fprlntf(stdsrr, W, ptable(Epl2 - iIJ));

fprIntf(stderr,"\n");
If I(cdone) )

prntC partition );

I
for (J -0; J < numinp; J+.+)

If( ptablel-pil - 1][j] 1- ptablei*pI2 - Iij] )

f / State transitions not equal "I
change - TRUE; / So move to now partition "/

done - TRUE;
"pl3++ - *p12; / Move state to end of list "I
Op12 - NULL; /* Erase state from present partition "I
break; / Jump out of comparlson for loop "I
S

If C done)

S

"p13 a EOP;

0-pl3 -EOR; /* Set new EOR "/
S

If ( debug )

prntC partition );
pl - ++p12; / Set pil equal to start of next partition "I
S

p1l - p12 - partition; / Remove NULLs from Partition list "/

while C p12++ I- EGR
If * p12 I- NULL )

,.pl - "p12;
If C debug )

fprIntf(stdrr,R*emove the NULL states ..... \n');

prntC partition );

/I Final partitioning Is In Partition[l ]/

/ Take one state from each partition "/

I f I debug)

" .- fprlntf(stdorr,"The final partitions are listed belov:\nw);

pl1 - state;
"pIt partition)Ol;
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for ( p12 - partition; 'p12 I- EOR; p12++ )

If ( debug && ( 'p12 % 0 ))

fprlntf(stderr,*Sd. %d n", cntl, *p12);

If ( *p12 - errorstate) *p1l - *p12;

If ( *p12 - EOP)

cnt1++;
e++pi I . 'C p12 + 1 / I' Make state a list of lhe reduced

states without EOR and EOP 'I

I/ Update STABLE 'I

'4-Iplt - EOR;
If C debug )

prnt(state);

p1l - state;

for p12 - partition; *p12 I- EOR; p12++)
S / Change states In STABLE to reduced table set 'I

If C ('pl2 > 0)&&(*pl2 I- *pi) )

for ( J- 0; J < nstates; J++)

for C k 0 0; k < numlnp; k++)

If (stableiJltk) - *p12
stableij)(k) - *p1l;

If ('p12 - 'pll ) test - TRUE; / Test If STATE ('p1l) equaled 'I

If (*p12 - EP ) /I value within the partition 'I

If (test)
I
pil++;

test - FALSE;

else error(10);

If (debug)
S
fprlnftf(stderr,*%nThe original number of states was Sd. , nstates);
If C nstates - cntl)

fprlntf(stderr,w No reduction posslble\nW);
- else

S

* fprlntf(stderr,"The reduced number of states Is d.%nu , cntl);

fprlntf(stderrThe states in the reduced set are listed below:\n);

for (J w 0; J 4 cntl; J++)

fprintf(stderr,*%d \n", state(JI);

If C nstates - cntl ) return; / Do NOT rearrange global variables
before returning

. for J 0 0; J 4 cntl; J++) / Sort Partition from low to high order '/

for ( k J + 1; k < cntl; k++) /* Insure next state rows are not changed
before required In the next FOR loop '/
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It Cstat.1JJ > state ID
- f- " -- . ftF
. ft ., p .

".,p I " slatol; io SWAP l
stateiJ] - statelk);
statetk] - I;

SIf Cdebug)

fprintf(stdrr,*REDUCE: Change stable and otable to reflect the new');

fprlntf(stdarr,* partitions. \n);

I

for J - 0; J < cntl; J++) /* Change next state & output tables to '/

I /* reflect reduced number of states
for ( k - 0; kI numnp; k++)

stable(j)[k] - stable( stateiJ] - 1 Ilk);I
for ( k - 0; k < (numinp * noutputs + 1); k++)

otableiJlIk - otablel state[J) - 1 Ik];

nstates - cntl; /* Change global variable to reflect now number of states '/

/* Make sure states are numerically sequential. For example:

1 2 3 4 Instead of 1 2 5 6. Nonsequential stae numbers are
highly likely when any reduction Is done. 'I

for ( J -0; j < nstates; J++)
if statelJ I- j + 1 )

for C k 0 0; k < nstates; k 4-+)

for ( I - 0; I < numinp; 1+)
If (stablelk](Il u state(j))

stablek)Ill- J + 1;

• ."

/o PRlTO - print a single dimension array until value EOR or -2 is reached '/

*: prntlp)
mnt 'pg

mnt 'pig
! pim"p;

fprIntf(stdsrr,OPartitIons: \nP);

for ( p1 ap; 'p1 I- EOR; pl-.)
fprinatf(stdsrr," %d, *pl);

fprIntf(stdrr,*\n*) ;

/* FOlIAT - prints an text file of global variables Nstatos, Nlnputs,

NOUputs, Symbol, Lambda, and the two arrays: Stable and Otable

formet(stab leotab Ie)
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Int stableIMAXSThOLS)IMAXCOISINI;
-- 4 ' char otab leAXSYiBOLS]IMAXCOIINI;

lot J, ka I;

If (debug)
fprlntf(stderr,tello from FOIAT n");

fprintfifouto,%d $d $d %d %I.1fnstates,ninputs,noutputssymbol,lmbda );
fprlntf(fout." dnn',errorstate);

for C J- 0; J < nstates; J++)
S

for C k - 0; I 4 numlnp; k++)
fprIntf(fout,#6d ,stablelJIlkI);

fprintf(fout,"\nl);

I
fprlntf (foutw\n\nN);

If ( C numInp * noutputs ) > NUMCOL )
15 S

fprlntf(stderr,*Warning - the output array will print funny since 0);
fprintf(stdrr,wnuminp * noutputs Is longer than $d.w, NUNCOL);

I
for C J - 0; j - nstates; J++)

fprlntf(fout, "is\n",otableIJ);

/ ERR - Prints error mssages to stdrr

errorln)
Int n;
S
char pI - *ER - Usage: symreduc (-d) outfile.ext < infile ,

*1p2 - ERRPOR - Illegal symbolic state table paramet In first line of file.,
a3 - RROR - One of the symbolic state table parameters Is zero.",

Op4 a 'EVIOR - Variable name In the state or output arrays did not match",
Ip4pl - any of the given symbol Ic names.',

*PS = OERRR - Incorrect number of state or output table variables. ,

*p6 a MRR - Invalid string In the state table. w,

0p7 - *ERROR - Partition list error.",
p *E RR - At least two symbolic state names are identicalill

*p9 - R - Cnet open the output files 0,

*pi0 - N 0R - State transitions changed to state NOT In Partltlon3 ;

switch(n)

case I: fprlntf(stdrr,"'s\n\n*n pl); break;
case 2: fprlntf(stderr,OSsln\n*, p2); break;
case 3 fprlntf(stdrr,*%sn\nw, p3); break;

case 4: fprIntf(stdrr,"$sls~n\n, p4, p4pl); break;
case 5: fprIntf(stdrr,*%s\n\nw, p5); break;

case 6: fprlntf(stdcrr,'Ss~n\nw, p6); break;
4m case 7: fprIntf(stderr,"%s\n\n', p7); break;

case 6: fprfntfistdrr,ws\n\nn, p8); break;
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cas 9: fplt.ter,% " p9) break;

case 90: fprlntf~stdrro %s\nn, p9); break;

'-: default: fprlfltfCstdorro'ERRO4E(lJS call to ERRORltl~n~nu);

eclt(1);
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ASSIGN.C

/ ASSIGN.C - Fixed arrays

/. ASSIGN - Makes an optimum state assignment for the state table

In the Input file. The output file Is suitable for PRESTO.

Options Include simple assignment and grey code schemes.
Debug Is also an option. C/

#Include <stdio.h>

Ddefine TRUE I
,define FALSE 0
#define MAXCOL 100 /* Maximum number of distinct state assignment columns e/

#define MAXNUIBER 50 /* Maximum number of states, Inputs, or outputs /

Ideflne NAXCOMBIN 500 /* Maximum for numinp * noutputs C/

#define MAXLEN 25 + I / Maximum length for symbol names plus 1 for

string termination
#define EOR -2 /* End of Record

#define EOP -I /* End of Partition */

#define NUNCOL 80 /* Number of columns on standard CRT */

l1 Used for visual output only - does not affect flies C/

-------------------------------------- ------------ NNU=N:=== ON=== O==NI/

GLOBAL VARIABLES C1

*-', static Int mass debug - FALSE, debug - FALSE,

simple - FALSE, grey - FALSE;
static Int nstates, ninputs, noutputs, symbol, errorstate, numinp ;

static Int dsanum, maxstate, num2n, num2n 1, num2R_1, num2R;

FILE *tout, *fopeno;

float lambda;

/0 MAIN PROGRAM

min (argc, argv)
I arge;

char *argvt l;

, I1t flag;

char otable |I4AXMN4ER1MAXC IN), svart MAXCOL It MAXNUI4ER I
Iot stransl'GIUIAERIIOMAXCO'INI;

regIster Ia t J), k;
I: .--. ou a,, flpe (argvtorgc-',-I ww");

•~ *e.": If (fout - NULL) error(2);

If (argo 4)rror (1);

'-' "",'',''" : ,, ", " ":,'""""":" "-"- ' .""- ,"" "," * """" "" " """ "", -"r '" ' """ :-"'- -.-,..._•..'?. ..-. . ._"":'"?"E .. '."..- I. :.



for C J - 1; J ' (argc-1); J44.)

~ If C agviJICOI - 1-1 )
svitch(argv.jJI13

5
case 'd': debug - TRUE;

break;
case IsV: If ( argv[j]123 - 'a' ) simple -TRUE;

else error~i);
break;

case 'g': if C argvCJ]12l - 'c' ) grey -TRUE;
else errorti);

break;
case 'in': mass debug - TRE;

break;,
default: error~i);

If C debug)
fprintf~stdorr," Hello! You are now In the PLAFST DEBUG ZONEI\nM );

flag - scanf("%d %d %d %d %f1 &nstates, &nnputs, &noutputs, &symbol, &lambda);

If (flag 0 ) flag - scanf("%d*, Lerrarstate);
ifCflag -NULL)ll~flag - EOF )) errorC3);

numinp - powei~ninputs); /* Numinp equals 2 raised to the nstates ~

0 If (debug) I* Print symbolic state table values from above *

fprintf~stdorr,"The symbolic state table values were read In 0);
fprtntf~stdorr,wcorrectly. TheIr values are : \nw);
fprIntf(stderr,%nstates %d, ninputs Jid nw,nstates, ninputs);
fprintf(stderr.0noutputs %d. CIF symbol %d nw,noutputs, symbol);
fprintf~stderr,*lambda %S1f numinp %d~n".lairbda, numinp);
fprIntf(stdrrmerrorstate %d\n\n, arrorstate);

/C Load the character arrays from the Input file.

If ( debug )
fprtntf~stdorr,The state table values are now being loadsdAn\nw);

loadint C sirans. nstates, numinp )
loadchar C citable, nstates )
If ( debug )

format~strans,otab I.);

setim; /* Set the values of global variables dsanum, mastate, numi2n
and num2n I

If C rrorstate, to NULL )

esxpand~strans itablo
1,-e£ undefined states transition to the errorstate

~ setnumo; I' R-'.t the values of global variables dsanum,
4'~ mxtate, num2n, and num2n I
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if (simple) code simple( strans, svar);

"*lse if ( grey ) code grey( strans, svar);

else optImum(strans, sver );

merge C strans, otable, svar );
fclose(fout);

/ EXPAND - makes all undefined states transition to the errorstate
and designates the output as all zeroes */

expand(strans, otable )
Int stranslNAXNW.BER) MAXCOMBIN!;-4.

char otabIeIMAXNUIUBER)IAXCOEIN];

Int Jk;

for C J - nstates; J < num2n; J4+)

for (k - 0; k < numlnp; k++)
stransijltk) - errorstate;

for ( k - 0; k < (numinp * noutputs); k.)
otablelJIlk) - '0';

otablelJ]Ik) - 0; I* Terminate the string */

nstates - num2n; /* All states are now defined - therefore the number

of states Is equal to the maximum number. /

/* OPTII4M - assigns an optimum state variable code to the state table. /

optimum( strans , svar )

tat strnsA MICERI4 MAXC0I6INI;
char svarIHAXCOLI!MAXINU4ERI;

char c, yvarIMAXCLIIMAXNUMBERI, YVARIMAXCOLIIMAXNUNBERI;
* tIt J., k, I, n;

Il costIMAXCOL), est, EST;

tf1 (num2neI) -nstates) 0~m0
/* Nstates equals 2 + 1 - so list y variables /

. r( J - O; J < num2R 1; J++)
• -.""decbln( yvarlJi, (J + I), nstates );
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else /* Nstatos is even so generate the y variables /
S

for C J -O; J - nstates; J++)
" yvar[O(IJI - 1-9;

yvarlO]Kk] - 0; /* Initialize the first string 0/

n - nstates - num2n I;
" J-0;

while ( n < nstates / 2 )

f
J -genO( yvar, n, o, 0 );

-4 yvarJJItO -0-; /* Change the first character In the useoW

for GENI */

J - gen1( yvar, n, J, 0 );I n++;

I
If C nstates % 2 ) /* Nstates Is odd so call both genO and geni */EiI I

J - genO( yvar, n, J, 0);
yvar[J)[OI - 9-1;

J - genl( yvar, n J, 0);
S

else J - genO( yvar, n, J, 0);

for ( k - 0; k < dsanum; k++) /* Fill the '-Is with a '0' or '1' /

If C yvarlkltOJ - '0' ) c - '1*;
else c - '0';

for ( I - 0; I < nstates; 1++)
if ( yvar[k]ll - '_, ) yvar[k)[I] - c ;

If C debug )

tlprintf(stderr,"DIstinct State Assignment Columns\n\nu);

for C k-0; k < dsanum; k++)
4

for C 1 -0; I nstates; l++)
If C yvartktIl] - '1') YVARIkIl1 - '0';

else YVARIk]II - '1';

YVARMIkIII - 0; /* Terminate the string. YVAR Is the complement
of yvar - required by D flip flop Implementation /

if ( debug )

fprIntf(stdorr,"%s %s\n\n", yvartk), YVARI k I );

-.. If C J t dsanum )

f
fprIntf(stderr,"J %d, dsanum Sd\n", J, dsanum);

error(7);

If C debug

..
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1.*

Ffprintf(stderr,*State Transition Table~n*);
form(strans);

for J - 0; J < dsanum; J++)
S

*St - cost _st( strans, yvartj));
EST - cost est( strans, YVARIJ]);

-. If ( est Z EST ) costij] - est;
else costIJI - EST;

If I debug )

fprInt1(stderrOPT: J %d,.est %d. EST %d ,. est, EST);

fprintf(stderrtucost %d yvar %st ",costIJ],yvar(J);
fprintf(stderr,"YVAR %s\n*,YVARI J );
S

S

sort I cost, yvar, YVAR );

If ( debug )

for ( J - 0; J < dsanum; J++
tprtntf(stderr,"cost %d, yvar %s, Y AR %s\n",costiJ),yvariJ),YVAR[J));

opt assign C strans, cost, yvar, YVAR, svar );

/* COST EST - copies the state transition table Into a truth table using
the given yvar of YVAR string. Splits the table into halves

' based on whether the yver string Is a '0' or '1'. It
divides the undefined states so that there are an equal
number of '0' and 'I' rows.
This Is done decrease the cost obtained when
the table Is evaluated by QMcClus. COSTEST Is used only
to obtain the minimm cost estimates.

cost est( strans, yvar)
Int strans KXNUBEIIMAXCO IN);

char *yvr;
3
char stMAMG UWERI[M/(iMB0INI, c, yvarp[Ii4XC I;
mlt J, k, It m, half, estimate;

strcpy( yvarp, yvar 1j

truth table( s, strans, yvarp ) /* Make truth table for yvarp */

if(dbug)

fprlntf(strr,"COST EST: TRUTH TABLE for Ss\n", yvarp);
formc( s, nstates);
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/* Separate '0' and III rows
/* Test yvarp starting at yvarpthalf I for values equal to yvarp[01.

Stop wheni yvarplhalf) Is equal to the first yvarp value - ThisII row must be moved to the other ('0' or 11) half of the table

while( (yvarp(half) 11- *yvarp) LI ( half < nstates )) half++;
for( j 1; J< num2nI ; J++)

If( *(yvarp + J) I- yvarp)

- If (mass debug)
N fprlntf~stderr,-half before %d\n",half);

If (half < nstates)
/* SWAP *

*for It0; k<- numnp; k++)

sIjilkI - sthaifllki;
sihalf]lki c

c - yvarpl half 1;
yvarpt half I - yvarpl J 3;
yvarpt -i c;

else /* MOVE *

for k -0;kI numInp; k-)
p sthalfilk3 - stjilki;

yvrpthalf3 - yvarplJI;
I f C mass debug)

fprlntf(stdlarr,"yvarp.half %c , yvarpthaill );
fprtntf( stdorr," yvarp.J %cUn*, yvarplJi);

yvarptj3
half++

If h half c nstates)
while( (yvarplhalf3 11- *yvarp) LU (half < nstates) )half++;

yvarpthalf4+I

while half -cnum2n)aer dnhl;

If yarIalv] 0

yvrlhl

yvwpl alf)-0



fprintf(stdrr,nRearranged column variable: %sn", yvarp);

for( J -0; J < num2n; J++) /* Fill In undefined states
If ( (yvarpiJ) 1- '0' ) La ( yvarpiJ] i- '1' ) )

S
for ( k - 0; k < nominp; k++)

*5* siJltkl - '1';
sIJIkI - 0; /* Terminate the string */

I f~dsbug)
I
fprintf(stderr,"COST EST: Rearranged truth table for cost evaIutationin");
formcC so num2n );

5*' S

estimate a TRUE ;
return V4cClus( s, num2n, yvarp, estimate);
S

€ . /0 TRUTH TABLE - geerates a character array truth table from the
. state tranststions (strans ) and the column variable

, ( ever ).
I/

for jRT A - ge 4 nrates a+ charae arry t ruth Table o h

for~~ eva k ;k .in;k

t h Csctrans, strans, cvar

trut asI - 0;e

char sclrassh4AXNUHERLI AXM IN, cver;
Int stransmA3G4UI4ERICMAXCO)iBIN];

Int j, k

forC J - 0; 3 < nstates4; J+) /e Make first cut at Truth Table /!S
~~~for (km- ; knumnp; k+)

: sctrauisJltkl - *( cvar * stransJiltki - 1 );
. sctressCJJ[k! = 0;

*::/ O~t tt a*ar

/C V4C -prints an array ofnum strings t ter *

formoc array, num )
char rray MA)C0L I4AXCO4BI ;

.. .tnt num;

" 101' JaE-"7
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for J0 ; J num; J++)
fprlntf(stdorrwsn, array(j|);

/* QMc"lus - Quine McClusky state evaluation

Q"cClus( s, numwow, svar, estimate )
char sIMAXNUMBERI(IMXCOMBIN], *svar;
Int nurow, estimate;

Int J, k, I, m, hold, lastpl, lastI, stackl, lastadJ, numbits;
char prime tipIMAXCOMBINIIMAXNUIMBER],

ImpI (MAXCOISINJIMAXUIER);
Int numoneslMAXCOMBIN], differ, pass, change - TRUE, ni, nt, sit, cost;

4' hold - 0; /e Used to count the number of lmplicants In the
zero half of the table.

Iastpi - 0;
numbits - maxstate + nlnputs;

for (I - J -0; J < nuarow; J++) / Git Initial Implicants , /
S
for (k O; k • numinp; k++)

If (stJilk) - '1' )

i
numoes( m++ ] - J ;
If ( J • num2n_ ) hold++; / The Implicant Is In the zero half */
dacbn( prime imp lastpl++ 1, I + k, numblts);
If ( C *(svar + J) - '1- )11( *(svar + J) - '0' ) )

prim uop Ilastpi - (llnumbits + 1 - 1;
else /* Hark the required Imlicants Cl

primoIp tlastpi - lilnumbits + ] - ;

I +- k;
5

lIastadJ lastpl;

If C estimate )
S

* ~/* Check for Ak rows. Oats the the Il~icants with
a 0 most significant bit first. Only gets one
adJanceny per Implicant from the Implicants

. with a I ms bit. This satisfies the criteria
that groupings In the transition table have the

%. same number of Implicants from each half of the

E-8
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tab I .5 . Hold equals the number of 0 halt prim.

ImplIicants.

lastl , 0;

for J- 0; J < hold ; J++ )

If C svarl numonesl J I ] - ,*' ) /* Skip don't care rows 1

continue ;

m -0;
for ( k - maxstate - I ; k 0; k-)

If (primoImp(J](k) I- prime__impgJlmaxstate - 13
m++; /* Checks for number of changes between

I and0 *0

If I (prime ImpJlmaxstat. - 13 - 'O')&&( -- 0) II
(prim IpIJ)laxstate - 11 - 'l')&&(m <- 1) )

f
If(debug)

fprtntf~stdorr,4QM: 0 half %s m :d\n, primeImpIJ, m );
strcpy( Impli lastl++ 3, primelImp[ J 3;
S

£

/* Look for 2k rows in the I hall of the table 0/

If C mass debug )
for Cl - hold ; I lstadJ ;I++)

I
fprlntf( stdorr,"QM prim lplicants: %s 0. prime Imp[ I 3 ) ;
fprintf( stdorr," row %d, yvar %c\nw, numonesili, svarinumoneslI]i);

I
for ( I -0; I 4 last1 ; I++ 3

for C pass - 0; pass < 2 ; pass++ ) /* Look for prime iplicants
first, then any adjacenles *1

If C pass - I )
J -hold*

for (;JI lastpl ;J++)

switch ( pass )
. . S

case 0: if svarl nuonest J 33- 3~ o )
• continue;

/0 Skip the don't cares on the first pass 'I
case 1: if svorl numonest J 3 3 1- '. )

continue ;
/0 Skip prim impllcants on the second

k" pass

--0;
for ( k nuebIts - I ;k 0; k-)

It I It• maxstale - I

If (prime Ip It k II- Imil I H k I
broak;

I E-9



else
If (prim_ lmpJIlki I prime ImplJllmaxstate - 11 )

a++; / Checks for number of changes
between I and 0 0/

If k > maxstate - I )
continue; /* Implicants were in different Truth

Table columns
It (mass_debug )

fprIntf(stderr,"AdJ. consider %s n, prime Imp( J 1) ;
If (prime lImptjIlmaxstate - II - 'O &&(m - 0) I

(prim Implj]maxstate - 11 - '1)&(m <- ) )

strcpy( prim.Imp[ lastadJ 1, primImp[ J 3 );
prime imp I lastadJ+ 11 0 3 - I---

/* Mark Adjanceny /

If C debug )

fprintf(stdlerr,1 half %s*, prime Ip J 1) ;
fprintf(stderr," m %d, m ) ;
fprintf(stderr,w, 0 half %snw, lmpl( I I );
S

break; /* Only look for one match 0/
a S

If J< lastpl ) /* Above for loop found a match and we
only need to look for one match so.. 0/

J44;
break ;

/0 Sort prime Imp Into ImpI by the number of Is In each term

for C -O0; J lastadj- J0+)

gray pode( prim imp[ J I ); /* Convert to Gray code l
for ( I - k a 0 ; k 4 nuabits; k++ )

If C (primimpljilki - '10) II (prim_impiJilki -. ) ) 1++;
a' mumoneljl

for( I-hold-J-0; J numbIts+1; J++)

for C k 0-; k 4 lastadJ; k++)
If (nlmonees Ik - hold) / Move toipl 0/

strcpyt Impl I 1, prim ni mp )I
Impil I It nubits + 1 -, /* Set check flag 0/

1++;
S

hold++;

If Is 0)

E - 10
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I,%1 3103 - 0; /* Mark divisions between term with
different number of ones 0/

last1 - I - 1; /0 Set pointer for Impi 0/

pass - 1;
hold -0;

If ( debug)
for C J 0; J < last1; J++)

fprIntf(stderr,WQMcClus: sn", Iqol( J 3 I;

while ( change /* Quine-McClusky algorithm

I
" 'change - FALSE;

stacki - KAXCOMI~N;
for C J - hold ; J < last1 - 1; j++)

S

switch ( Impli J 1101

I
case ''-1 if C pass,- 1 )

If( mass debug )
fprintf(stderr,-Est Adjacency: %s%nw.lmpltJI);

Implt J It numbits + 1 I - 1; /* Set check flag 0/

1f ( stkchk( stack1, Imp1, J ) )
strcpy( Ipli-stackl), Impl J );

conti nue;S

break;
case Os Impt-stacki 1101 0 0; /* Set division marker '/

continue;

k -0;
l-J.1;

whoileC Ck 2 1< lasti I
ks / Only check for adjancencles in this

division and the next 0/

switch( Imp1( I 11 0 3 )

V. case O: k++ ; /0 Check for division marker 0/

1++
continue ;

case 0-1: If ( pass - I ) /* Check for estimated adjacency 0/
S

. continue;

differ nunblts;

'9. for a- O; m nuebts; m+)

E - 1i'q~% %



If (iOPIJJIm) Imit111mI differ-;
else

hold " a;
If ( differ - I

/* IMPllcants differed at only one postlon
- so they are adjacent. Stkchk checks

the stack for duplicate entries /

If( mass debug )
fprintf(stdrr,*Adjacency: Ss %s\ni mp1[j3,Imp11lI);

If (stackI v j ) error (10); /* Stack overflow 0/

Impla J I1 numbits + l I - 1; /* Set check flag 'I

imp1I I It numbts + 1 ] - I; /* Set check flag 0/

change - TRUE; ./ Let the outer while loop

know that we found an adjacency../

strcpy( Impl-stackl 3. ImplijI );
Impti stackI It hold I - 1-1; /, Mark the adjacency 0/

If ( I stkchk( stack1 + 1, Imp1, stack1 ) )

stackl+ s /* Check if already on the stack /

1++; /* Point to the next Impllcant 0/

/* Compact Imp1 /
I -0;

for ( J 0; j < last1; J++)
If C (Implij)[numblts + 1- 0 )& ( mplj][0) 1- 0))

if( mass debug )

fprintf(stderr,'Q1 compact: %s \n", Implij));
strcpy( ImlpI I1, Impl[ j I );
irplI 1++ It nublts + 1 - 0; /* Zero the check flag0 /

hold - I; /0 Save the start of adjacent Implicants

from the last search /
for C j - K MIN - 1; j >- stacki; j- )

strcpy C implI I 1, Impl ) 
impl 1++ ]1 numbIts + 1 I - 0; I Make sure that the flag 0/

5 /0 Is reset. 0/

lastl - I

if (massdebug )
for i - O; J < lastl; J++)

fprIntf(stderr,"QMcClus: lmp1 %Is n", ipliJi I;
If debug )

pas fprIntf(stdarr,Q"cClus pass f Od n , pass );

/* Done with the Qulne-14cClusky - so find minimum cover 0/

nl- n- sit - /* Number of Literals, Number of terms, and
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stc I MXCMI ;Sigeliteral terms 
*

for ( .3 - 0; .3 < lastpi; J304)
If C primImp I .3 It numbits + 11 - 1)

I-O

41 for C k - stackI ; k < MAXCOMBIN ; k4-e

%IS
If Cmass debug)

fprilntf(stderr,"STACK CHEtTKII %s %nw~tmplik3);
for C I - 0; 1 < nuuiblts; 1++)

If (lepltltll I- 0-')W&Iupliki I 1 11- prime inpt .1111))
break;

If CI -numbits )/* IMatchi
.~' .... I

If (debug)
fprlntf~stderr," M~in. Cover: %s UsWM prlmeiiipCj1,implkI);

break;

If C I -numbits )
* continue; /* Found a match so skip the next search *

for C It last -1; k)- 0 ;k-)
I /* Search the least restrictive Implicants first/

I f Cmass debug )
fprfntf(stderr,-CHECKII %s nw,iupIlk3

If CImpl(klO) - 0 ) continue;
for I - 0; 1I< nuebits; l++)

If ((impilk)[lI 11 '-1)&&(Impltk3( I 1 11- prime Imp[ j 1113))
break;

if C I-numbits) /' Matchi
f
strcpy C impli -stackI 1, Iupi k 3I)
If ( debug )

is fprintf(stderr,* Min. Cover: %s %s~n",prIm iup(J3,Imp1Ik3);

break;

/C Determine the cost of state assignment

J-0;
while CstackI 4 MAXCOIUIN)

if1 debug)
fprintfC stderr,w Stack: Wsn", Impli stacki I )

strcpy( 1mphi 34+ 3, Impit stackli'. I

E - 13



for( J O; J last; J++)

" "for ( I k k- 0; k < numbits; k++)

if C ipi J Ilk) t- '-' ) 1++;

. If ( 1 ) sit+;
ni +" I;

It debug I
fprintf(stdsrr,004cClus: ni %d, nt Sdo sit %d~n",nI,nt,slt);

If C nt - 1 )

if ( sit - 0)
cost - ni;
else
cost n O;

else

cost - ni + nt - sit;
return cost;

,:::uu::::u::::::::::::::::::::::::::::::::::

STKCWI - Checks the given stack for duplicate entries */

stkchk ( stack, list, p )
I nt stack, p;
char li st[M COIN It MAXNUMBER I;

Int J;

for C J = stack; J < 1AXOIBIN; J'" I
if ( strcmp( list( J 1, list[ pI ) O)

1 return FALSE;
return TRUE;

!S

I ----------------- ----- 414161---------------------

/C GRAY _CE - Generates a gray code form the binary number pointed

to by PS. The binary number Is an one d~menslonal

array of the charcters 1 and 0. The string is
nul terminated. This algorithm was taken from
Digital Logic by Chirlian

gray code ps )
char *ps;

E- 14
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char c, op, cstore;
,- .-.'I at save

save - 0 3
C , '0'; /* Seed for the exclusive or loop @/

p " ps; /* Don't change the orglnal pointer */

If C op - '-' ) /* Save the adjacency mark 'I

save * 1 ;
Op = I' ;

while( (p - ps) 4 Mexstato )~S

/* Exclusive or loop '1

cstore - 'p; / Save the current string value '/

If (( (C c- '0' )L&( *p - '1' ) )11( C c- '1' )&&( *p- '0' ) ))
ep - 'a'; /* Exclusive or is true 'I

else
Op = /01; P Exor Is false '/

c - cstore ; I' Use the present value of 'p to exclusive or

with the next value e/
p++;

If (save)
'ps,

/ SORT - sorts the arrays Cost# yvar, and YAR using Cost as a key.

sort (cost, yvar, YVAR )

Int cost[.AXCOLI;
char yvar[MAXCOLI(MAXHIUMBER), YV(IMAXCOLI(MAXNUMBER];
S

tnt J, 3, 1

char hold[IAMUMBER];

for ( J 0; -jdsanm; J4-+.
for k j + 1 k 4 dsanui; k++)

If (cost k 3 4 cost[ J I )
5 /* SWAP - Everytim something Is swapped, one of the

things Is swapped to Its correct location. 'l

Mf "as debug )
fprlntf(stdrr,'SORT: cost %d, yvar %s~n",costiklyvarlkl);

I a cost[ J 1;
cost[ J I -cost[ k ;

"..c. Cost( k I a 1;
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srp(hold, yvarl j I;

stropyC vrlk1 hold);

strpy( hold, YVARI J I )
strcpy( YVARI J 1, YVARE k I )
strcpy( YARI k 1, hold )

I' OPT ASSIGN - performs the optimum state assignment. It uses th, cost
estimates just completed as a guide as to when the Is
achieved.

opt assign( strans, cost, yvar, YAR, svar)
char yvariMAXCOLJ IMA)GIUhUER], YVARIMAXCXLI [MAX14W.9ER],

svar[4AXCOL IMAXNUMBER I;
mnt costIMAXCOLI, strans[AMUMBIERIMAXCOIN);

tnt J, k, 1, m, stnum[MAXCOLI, done, sans an# mis;
tnt actcostl MAXCOL I, savenuml MAXCOL J. pass;

dore - FALSE;
~1 pass - 0;

- for C J -0; J < Nmstate; J++)
stnumIJ) - J; I' Initialize the state column checker

for C 3 a 0; J < dsanum; J++4 )
* I actoostl j I - -1; /* Initialize the actual cost array *

while C I valid( stnum, yvar) )
nhsctasnC stnum, maxstate - 1, dsanum )

for (ms-an - J -O; 3'< mastate; J4+)

an 4-best 'oost( strans, yvar, YAR, sVar, Stnumi J 3, aCtoost);
* as costI staumIJl 1;

If ( debug
fprlntfistder,CT: inns %d, an %d. svar %s~n.mns~an~yvar~stnumIjID;

I
If C debug

for( j-0; j <saxstate; J++t
fprintf(stdorr,OPT: Wsn,. svarl stnuml J I I;

sen-en;
for jaO0;j 4 mastate ; J4+ /* Save the previous *

saveniml 3 stnuml j3; /' y variable set *

-~I -.: son OC 5 ~ )
"'Swhile Cdone -FALSE )

pass++
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If I debug
fprintf~stdor,,san %d, an %d, inns %d\n", san ,an ,mns )

If ( I nextasn( stnun, maxstat. - 1, dsanum ))break;
while C IvalidC stnum, yvar ))

If C I nextasn( stnum, maxstate - 1. dsanum 3)break
for C ins - J - 0; J ' inaXtate; J++)

Ens +- cost! stnumCJl 
3;

if ( debug )
fprlntf~stderr,"OPT: s %d\n",svartstnum!JII,stnualjl )

If Cson <- inns

done -TRUE;
If ( debug )

fprIntf C stderr,*OPT: DONI~IiI san %d inns %d~nm,san,mns);
continue;

for (an -J -0; J < maxstate; 3443

an +- best cost( strans,yvar,YVAR,sver~stnuml J I,actcost);
If ( debug 3

fprIntfC stderr,"OPT: %s~nw, svaristnumijii);

4I ifdebug)
fprintf~stderr,'OPT: inns %d, an lid, san %dln*, ins. an, son);

ifCsan > an)

san -an;

for j --0; J< maxstate ; J++4 ) /* Save the previous
savenu=[ J I- stnuI JI /* y variable set *

If C debug3
fprIntfCstderr,"san %d, an %d, inns Wdn'% san an nmns )

If ( san - ins3

done aTRUE;
If C debug3

fprintf~stderr,*DONEII san %d \n", San 3

If debug)
fprintf~stderr.Osan %d, an 11d, ins Wdnw, san ,an ,mns 3

/* Finished - found the optimum binary assigninenti '

for C .1 - 0; J 4 mexstate; J4+

stnuml J I - savenuml I I
strepy( svarI j 1, svarl stnuml 3 I I 3

I' An Interesting note: Because of the cost sort the
-. *-final combination of y variables will always be In

ascending order In the svar array.
fprintfC ster,"OPT: y variable %s, 0, svarl j I 3
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k - blndec( svari J I);
fprintf( stderrO decimal value %d, Cost %d\nwk, actcostl stnumIJii);

fprlntf( stderr,*OPT: Ens %d, san %d\nu, inns, san ) ;
fprlntf( stderr,*OPT: The solution took %d iterations\n, pass ) ;

/* BINDEC - Converts a character string of I's and O's
to a decimal number. -,/

bindec C p )
char *p;

Int J k, r;

k -- 0;
r - nstates - 1;

while ( '(p + k) 1- 0)

f
If C *(p + k) - 11)

j+- power( r)

k+-;

1S

return J;

/* BEST COST - Determines the smallest actual cost of yvar or YVAR.
The result Is stored In svar and the cost is stored In
actcost to minimize the number of Quine McClusky calls

bestcost ( strans, yvar, YYAR, svar, Index, actcost )
Int stransIMAXNa4BERIIMAXCcHBIN), actcosttAXCOL 1, Index;
char yvar(MAXCOLIiMAXNUMBER), YVARI MAXCOL it MAXNUMSER 3,

svarl MAXCOL It MAXNUMBER 3;

. t actual, J ,k ;
char st HAMGUM4BER 3t MAXCOIBIN 1;

actual - FALSE;

. . - If a actcosti Index 1 - -1 ) Cost has not yet been calculated 'I

.- 1
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truthtable( s, strans, yvarl index I 11

dont care( s, yvar[ Index I);

J w VcCIus( s, num2n, yvar[ Index 1, actual )l

truth table( s, strans, YVARI Index I )S
dent careC s, YVARI Index I ) ;
k -754cClus( s, num2n, YYARI Index ], actual );

if ( J ),k It

actcostl Index I -

strcpy( svart Index 1, YVARI Index I

actcostl Index I - J;
strcpy( sver[ Index ], yvarl Index I );

return actcostl Index I ;
, S

/-/

() DONT CARE - fills in the don't care states to the truth table

dont care( table, string )
char tablel MAXWUER It MAXCOIBiN 1. string[ 14NA1HBlER I ;

Int J, k

for J - nstates ; J < num2n ; J++ I
!S

for ( k- 0 k 4 numinp ; k++ I

. table[ J It k I -'l';
string[ J 1 - 0 ; /* Make sure that the string Is completely

terminated

JS

/C VALID - determines If a state assignment scheme Is valid *1

• valid ( stnum, yvar I

• # char yvarI[MAXC IIMAXNUNI'ER ;
J

E - 19

L -



Int stnumlPAXL1;

hnt J, k, I, weight, wt[MAXCOLI;

11 massdebug )
for 0 J-0; J < maxstate; J++)

fprintt(stdsrr,"ValId: %s\n", yvarl stnuml J I ] );

J - 0;
while C yvarl 0 It J I - 0)

f
It - 1;

weight - 0;
for 1 -l 0; 1 - maxstate; l++)

S

weight +- (C yvarl stnumi I 1 31 J I - 10') U;

* k* 2;

for C I a 0; I J; l++)
If ( weight - wti I I ) return FALSE;

wti J I - weight;
J++;
I I ( mass debug )

fprlntf(stderr,Valid: weight %d\n", weight);

return TRUE;

/* 1EXTAS4 - gets the next combination of state assignment columns

nextesn( stnum, p. limit )
Int stnum[MAXCOL, p, limit ;

I
mnt val;

val TRUE;
If C stnumi p I < limit - I ) stnumt p I += 1;

else
If C p 3 0l

vl a nextasn( stnum, p - 1, limit - I );

Sstnuml p I - stnum p- 1 + 1;

else
If ( etnum I p I < dsanum - maxstate )

stnum p I +- 1;
else

vii * FALSE;

-0return vi;
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/* MOME produces the final output file for PRESTO *

merge ( strans, otnb I, svar)
V char Itbe(MAXNUMBERI(MAXCOBINI, svarMAXCOLIU4AXNW.BER];

Int stransMAXNUMBER)IMAXOMBlNi

fat J, It, 1, *;
char store( 14A)(NUMER 1;

fprintf(foutpw.i%d n.o%d", nInputs + MAXstate, noutputs + maxstate I;
fprintf~fout," n.p%d n" nstates * numInp)
for ( J - 0; j< nstates ; J4-' )

for Ck -0;I numnp; k++)

decbinC store, k, nInputs 3; /* Input signals *

fprintf~fout,%su, store);
for ( I - 0; 1 < maxstate; I++) /* Present State *

putct svarl I It J 1, fout )

perteC ' fout I, I' Put a space between the Input and
output parts of the PRESTO Input file *

m - stransi J If k I - 1; /* Use m as an array pointer for svar
for C I - 0; 1 4 maxstate; 1+0)

putcC svar[ I It a 1, fout I; /* Next State *

for( C a0; 1 <noutputs; I++')
putcC otablet J It1k +5 I # fout I; /* Output signals '

putcC '\no, fout I;
i

fprintf( fout, 0.*%n*);

/* 00M - generates distinct state columns with n '0's

genOC yvar, no varnum, varpos)
char yvartMAXCOLItMAXNIN'ERI;
Iat no varnm, varpos;

If C varpos -0 1, y'varvarnumilvarpos] 1 0';
If C a I)

for C verpos4. ; verpos < nstates * varposl4

yvartvarnumllverpos) - '0';
vearn n genO( yver, n-, varnum, varpos);
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yvarivarnum)[varposl

* . else
It C n I)

6
strcpy( yvarlvaa-num + 11, yvartvarnuml)
yvartvarnum+*Jlvarpos] - '0';
It C mass debug )

fprintf~stderr,*GENO yvar: %s\n*, yvarlvarnum - 11);

I
else error(S);

return varnun;

-- - - - - - - - -- - - - - - - - - -- - - - - - - - - -

,J/* GENI - generates distinct state assignment columns with n 'I's *

genIC yvar, no varnum, varpos)
char yvarMAXC0L1I[AXNUER];
Int no varnump varpos;

fprintf~stdrr,GENI \n %d, varnum %d, varpos, %d no n varnum, varpos);

If Cn ), I )
while ( 4-4varpos <nstates )

I
yvarlvarnumJ~varpos] - '1;
It ( mass debug )

fprintf(stderr,"GENl yvar: %s~nw, yvarlvarnuml);
varnum - genic yvar, n-I, varnum, varpos);
yvarivarnumllvarposJ

also
If a - 1I

while C varpos < nstates - 1I

strcpyC yvarlvarnum + 11, yvarlvarnuml )
yvarfvanumflt4varpos) - '1t;
If ( mass debug)

fprlntf~stdrr,GEI yva.-: %s\n, yvarlvarnuml);

varnum+*;

elso error (9);

return varnum;

----------------------------------------
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/0 DECBIN - converts decimal number to binary string of '0's and '1's /

dcbln( p, n, numlon)
Int n, nimlen;
char *p;
I

Int psIMA)XNUMOME, J, k;

J-Oi
vh!|e ( n 1-O 0

5
pstJ 1 - C n S 2 )+ 'O';
n - n / 2;
S

J--3
for I t - 0; k < numlen; k++)

if ( k- numlen- I - J)
*Cp+k) - ps[J--];

else
*(p k) - 0';

*(p + k) - 0; /0 Terminate the string 0/

aIf ( debug )
fprIntf(stderr,KEC8IN: % sn p);

/0 OWESILE - Simple assignment

code simple( strans, svar)
char sverMAXCOL1C)AXNUM4ER];
Int strmnst NAXNUBER I MAXCOM IN I;

Int J, It, *, actual, total
char s*t 1A4WU4BER 3, st 1AMUIBER I! 1AXCO4BIN 3;

tothI a 0
actul - FALSE

for C a 0; J -' nstetes; .34+)

d bln( st, J, maxstate ); /* Generate binary numbers 0/

for k a 0; k < mxstate ; k++ )
* sver Ik l( j 3 - stlt k1;

for (J- ;J < maxstate ; J++) /* Got them In y variable format'/

for ( k- 0 ; k < nstates ; k++
stl I I svar[ J It kI ;
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st( nstates 1 - 0 ;
truth table( s, strans, st ) ;
a - rfcClus( s, num2n, st, actual ) 3
total +- ;
lprlntf(stdrr,"SI4LE: variable $s, cost Wdn", st, a ) ;
I

-prlntf(stderr, *SIMPLE: Cost Sdn", total ) ;

'9

/* CODE GREY - Gray code

code grey( strans, svar)
.*. char svarMAXCOL]MA lUMBER];

Int stranst MAX)IUBER 31 MAXCOMBIN I ;

* aInt J, k, m, actual, total ;
char st[ MAXNUMBER 1, sIMAXHUMBER It MAXCOIBIN ];

*" code simple( sirens, svar ); / Get binary assignments */
for T JiO; J < nstates; J++ )

for (k - 0; k < maxstate ; k++ ) / Convert them to gray code */
Ssti k - svar[ k I( J ];
gray code( st );
for ( k -0; k < mxstate ; k++ )

stotal "0 ;

actual * FALSE ;

for C J 0 J 4 mmastte ; J++ )

for (k- 0 t k nsttes ; k++) /* Convert hem t yvarlable format /
stl kI I svar[ J 1 Ik I ;

st nstates I - 0 ; / Terminate the string */
truth table( s, sirans, at ) ;
m a 4cClus( s, num2n, st, actual ) B
total -a ;
fprtntf( stdrr, *GWAY CODEs variable %s, cost %4vo, st, a ) B
I

fprlntf( stdrr, GRAY CODE Cost: Sd VP, total ) ;

E
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/ POE 3- raises the giveo Integer to a power o *1

- power(n)
*Int n;

S

Int J, pow 1;

If ( n - 0) return pow;

else for (J 0; J < n; J++)
pow -pow * 2;

return pow;

/ LOADINT - loads Integer strings of maximum length MALEN

loadlnt( p, numow, numcol )

nt p(PAXN4UIER1l4AXCOMBtIN];
t nuorow, numcol;
S

nt J, k, check;

If (debug)

fprintf(stdsrr,LOADINT: the number of state rows to load is %d"nnumrow);0 fprintf(stderrLOADIT: the number of next state columns Is Wd n,numcol);
S

for (J 0;J < numro; J++)

for (k- O; k < numcol; k++)

s confd, &check);
If ( check I NULL ) p[J)k] check;

else eror(4);
If C mass debug ) fprlntf(std rr," W, pIjilk]);

4.

If messdebug ) fprin1fCstderr,"%n");

/t33;:::::::::::::uu.. ::::::::::::::::::: ::: :::::

/0 LOAIDH - loads character strings. C/

loeMdhar(otable, astates)

char otable[NAXPlIMERIMAXCGUINI;
.t nstates;

% Iot J. check;

E -23
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for Q -0; J nstates; Jo-')

tf(check. *scantC~s", otabloij]) NU HLL )error(5);
If C(strl~ntotablelj)) ) I- numinp *noutputs) error (6);
If Cmass debug )I

fprintf(stdeorr,-LOADCHAR: %s\n*,otable[JI);

/* SEThII4 - sets the value of global variables, dsanuwn, maxstate,
num2n, and num2nI

V. sitnum()

tnt J. k. n;

n - 0;
while C(power~n) n states) ) ne-';
num2n -power(n); /* Calculate the number of state variables required *

S. maxstate n ;
num2n1 I power( (n-i))
num2R_1 -power( (nstates-1) )-1;
num3d - power( nstates )

dsanum w 0;
for ( j- C nstates - num2n_1); J <- num2n_1; J++)

dsanum 4- bionoaC( nstate, J);
dsans. - dsanum/2;

:K If (debug)
5.-s-s

fprtntf(tdrr,SETNUM: n %d, num2n %d, maxstate, %du, n, num2n, maxstate);
5/~ fprintf(stdsrr,' num2n1 I d, num2RI %d nw, num2nIs num2R_1);

fprintf~stdorr,g num2R %d, dsanumn %d \n", numlR dsanum);

P~ 810101 - calculates the numrical result of x things taken y at a time 0/

-v btonom(x,y)

tnt J. dIff, n. m;

E - 26
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2- -777 -y7

-diff - x Y;
for C J-1 +diff; J~;j++f) *J

for C J -1; J<y; J++i) . *Sa
is-I (I debug )

fprintf~stderr.8110014: %d things taken %d at a time is %d~nlx.yn/m);
>4 return C n/rn)

/* PRNTC) - print a single dimension ar an4til value EO o - Is ece

. ~. prnt(p)
Int ep;

Int epI;

fprintf~stdmrr,*Partitions: n");

for (pl -p; ep1 I- EOR; pI+4)
fprlntf~stderr," %d", epI);

fprintf(stderr,*%n");

- - - - - - - - - - -- -- - - - - - - -- - -- - -- - -- -

.r. /C FORMAT - prints an text file of global variables Nstates, Ninputs,

Jb Noutputs, Symbol, Labda, and the two arrays: Stable and Otable

foretstablo,otable)
Int stableIMAXNUMBERIEMAXCOMIN];
char otableMAXNUERI[MAXCOtBIN);

Int J, k, 1;

If Cdebug

fprintf~stdorrI*Hello from FORMAT? Prints testate 0);
fprlnlf(stderr," transition and output arrays. ii");

fprlntf~stdorr,"%d %d %d %d %1.lfw,nstats,nlnputs,noutputs,symbol,laabda )
S fprintf~stderr, %d~n~n*, arorstate);

for CJ 0; J 4 nstates; Jo+)

Co ki 0; k 4 numinp; k'O4)
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* fprlntf(stderr,"%d ",stable[JItk]);

4! fprintf(stderr, \nn );St

fprintf(stderr,"In");

If C C numinp * noutputs ) ) NUMCOL )
• S

fprtntf(stderr,"arnlng - the output array will print funny since 1);
fprintf(stderr,'numinp * noutputs Is longer than %d.0, NUMCOL);

for C J - 0; J < nstates; J++)
fprintf(stderr, %s\n*,otableJ]);

* S

SI FOfW4 - prints Just the transition table */

form ( stans )
Int strans[MAXNUMBER 1MAXCOM IN ];* S
Int J, k;

for C J 0 0; J < nstatos; J++)

* for I k- O; k4 numinp; k++)
fprIntf(stderr,'%d *,stranst JlZk])

fprIntf(stdrr,u\nu);
I

fprIntf(stdrr,'\n');

----m~----------------------------------

/* ER - Prints error messages to stderr a/

errorn)
Int n;

char p - "ERROR - Usage: assign l-dI I-sa-gc] outfile.ext c inflle
Op2 a *ERROR - Can't open the output filet",
p3 a ERIRR - One of the state table parameters Is Incorrect.',

-P4 w EOR - Next state Input file error!',

*pS - MROR - Output string Incorrect. 0,

.p6 w -9R - Output string Is not equal to numinp ,

*p7 - "ERROR - Wrong number of distinct State Assignment Columns' ,

p a MOR - GenO called with n loss than 1. 0,
*p9 - OERROR - Geni called with n loss than 1. 0;

' switch(")
E
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case 1: tprlntf~stderr,"%s~n~n", p1); break;
case 2: fprTntf(stderr,*%s~n~nw, p2); break;
case 3: fprfntf(stdorr,%s~n~nw, p3); break;
case 4: fprlntf(stdsrr,%s~n~n", p4); break;
case 5: fprlntf(stdrr.%s~n~n", p5); break;
case 6: fprlntf(stdorr,*%s %d. n n", p6, numlnp); break;
case 7: fprtntf(stdorr,%s~n\nw, p7); break;
case 8: fprlntf(stderr,%s~nkn", p8); break;
case 9: fprlntt(stderr,*%s\n~n", p9); break;
default: fprtntl(stdorr,ERRI4EOUS call to ERRORlll~n\n");
I

exit(1);

N;S



CFORI4.c

P* CFORMAT -changes PRESTO's output file to the format
required by PLAGEN. It also adds the CIF number and lambda

size, supplied In the commiand line, to the file.
CFOR4AT uses the standard Input. Input files are supplied

- by 1/0 redirection. CFORpAT assumes that the Input and output
arrays are separated by a space. The output file Is supplied
In the command line.

Usage: cform symbolic state.table < asslgn.out

#Include <stdio.h'

#define REAM *r
#define WRITE O"

#define NULL 0
14AIN PROGRAM 'I

maIn(argc, argv)
nt argc;

* char *argvl( ;

char stringf2l, c;
Int numInp, numout, numprod, symbolnum, J, k ;
float lambda;

FILE *ft ;

If (argc 1- 2 ) error(O);
if ((t - fopen(argvi1),READ )) -N ULL) orror(4);
numInp - numout - numprod - 0; /1 Initialize array size variables for

later error check that the PLA has

no zero parameters 0/

fscanf( fl,"%*d %*d %*d %d 5af, &symbolnum, &lambda );

for J -0; J < 3; J++)
" / Get the PLA parameters '/

scanfC2s", string);
If C stringO] 1- 9.9) error(i);

Sswitch (stringil)

wase Oil: scanf("cd , &numInp); break;
case lo': scanf("%d", &numout); break;

case Op': scanf(%Sd", &numprod); break;

default: error(I);

If (nwinp * numprod * numout - ) error(1);
/ Write the PLA parameters to the output file /

prlntf( %do %d, %d, P,numinp, numprod, numout);
; "-'- prlntf( "%do [1.1f~n" , symbolnum, lambda);

-l* Get the PLA specifications and transfer them to the output

F-I
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file. The Input values are not changed. The output
values are changed as shown In the switch. 4/

. for (J O; J c numprod; J++)
S
for (k - 0; k < numinp; k++) /* Handles Input Array 4/

S

scanf(USls* , c);
putchar( c );

putchar(' 1);
-for (k - 0; k < numout; k++) /* Handles Output Array '/

JJ

scanf(Clsw, c);
switch (c)

case '1': putchar('-'); break;
case 'x': putchar('OI); break;

case -0: putchar(oO); break;
case '0': putchar( c 3; break;

defaultz error(3);
5;

• S

putchar( I n' );
*" S

error(ni)
Iet n;

S
.* switch (n)

case 0: fprlntf(stderr,*Usage: cformat symbolic state.tableu);
fprlntf(stderr, %nStandard call: cform sym_st.table < 0);
fprlntf(stdorr," a.out I plagen~n\nu);

A break;
case 1: fprintf(stderrERROR - PLA parameters \n\n*); break;

case 2: fprlntf(s+derr,*ERROR - The number of characters In the Input");
fprlntf(stderr,* string did no+ match the number associated\n");
fprlntf(stderr,wwlth .I. The required space between the Input");
fprlntf(stderr," and output arrays may be misslng.\n\n*);
break;

case 3: fprintf(stderr,"ERROR - The output array had an Illegal characo);
fprintf(stderr,*ter.\n Legal characters are '_o 01' 0x');
fprlntf(stderr,', and '00.\nn); break;

case 4: fprtntf(sdrr,'ERROR - UNABLE to open output file.\n\n*);
break;

default: fprlntf(stdsrr,"ERROR - erroneous call to errorl \n\nm);

S, cItFO);
- .S



MAKE SFSM.C

Make sfsm - Creates the SFSM CIL ftile

fnclude <stdlo.h>

9. $def ine FALSE 0
#def ine TRUE I

maln(argc, argv)
Int argc ;

char *argvll ;

S
FILE *finl, *fln2, *fout ;
int nO, nI, n2, n3, n4, n5, n6, numlnp ;
Int J, k, maxstate, found;

char c, store( 80 1, string( 20 ] ;

strcpy( string, "external" );
fIn1 - fopen( argvl 1 3, r" );

fin2 - fopen( argvl 2 3, "r" );
fout - fopen( Osfsm pla.cifW, wO ) ;

fscanf( fin2, *%d %dw, &J, &numinp );

Ii ;
kaitl -1;

m xstate4 ;

found FALSE

while C ac* getc( fIni )) I- EOF )

If C c- 'C' )ILC found - FALSE ) )
S

fscanf( flnl,*%su, store );
If ( strcp( string, store) -0)

I
J - strlen( store ) ;
stre[ J++ I ' ';

/* Make sure that there Is a space between words /

hille( Cc - getc( fIni ) ) I )' )
store[ J++ =c ;

store[ J++ I m c ; /* Get the last character
store( I 1 - 0 ; /* Terminste the string V
while C c- getc( fln )) I n');
found T TRUE ;

'i

• 6-1
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else

putc( c, fout ) ;
tprlntt( fout, O$sl, store );

else
putc( C, tout ) ; /* Write all characters In the file except the

external pla aessage - It can appear anywhere
In the file and disrupt the cif fllel */

prIntt( Iinclude \O/usr/lfb/local/s_.ext.cll\ \n") ;
prIntt( O$s \n", store ) ;
prIntf( I nSFSM ni n npla(O,O); \n") ;

nI - maxstate + numInp ;
n2- n /2 ;
n - 28 + ni 16 ;
n4 -12;
n5 - 22 ;
n6 -7 ;

printf( *Iterate Sd, 1 16, Onw, nI ) ;

prInt( 0 PlaClockin ( 15, -58 ); \n" ) ;
printt( "Iterate %d, 1 16, O~n", n2 ;
prlntfC PlaClockOut $4S, -53 );\a-. n3 )

for j -; J < maxstate ; J++ )

prlntf( "wlre poly Sd, -53 v 2 d Sd I Sd , n3, n4, n5 3;
prIntf( "dlfl u %d ;\n", n6 3;

• ". n3 +- 8 ;

n4+- 10;
n5 +m 245

n6 I0

printf( OWn5 \n \nm

". aclose (tout);

.,

*,'9"
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Abstract

Programmable Logic Array From State Table (PLAFST) is a computer

aided design (CAD) tool that takes a symbolic state table as input and

produces a very large scale integrated (VLSI) circuit implementation of

the symbolic state table. The state table is first reduced symbolically

using equivalence partitioning. A near optimal binary state assignment

is made based on the Story, Harrison, and Reinhard procedure as modified

by Noe and Ryhne. Distinct state assignment variables are sorted based

on cost estimates obtained by increasing the number of adjacencies in

the state transition table. Once sorted, the actual costs of valid

state assignments made from the state variables are calculated. Since

state assignments with the lowest cost estimates are investigated first,

an optimal solution is found with a small number of iterations. This

binary state assignment is demonstratably less costly than either simple

or gray code assignments of the state variables. The VLSI circuit

consists of a programmable logic array (PLA) and clocked buffers. The

state buffers are properly interconnected. The final outputs are Chip

Layout Language (CLL) and Caltech Intermediate Format (CIF) descriptions

of the integrated circuit. PLAFST also plots the final integrated

circuit.
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